• 제목/요약/키워드: yield learning

검색결과 136건 처리시간 0.032초

적응 훈련 신경망을 이용한 플라즈마 식각 공정 수율 향상을 위한 공정 분석 및예측 시스템 개발 (Development of Process Analysis and Prediction Systeme to Improve Yield in Plasma Etching Process Using Adaptively Trained Neural Network)

  • 최문규;김훈모
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.98-105
    • /
    • 1999
  • As the IC(Integrated Circuit) has been densified and complicated, it is required to thorough process control to improve yield. Experts, for this purpose, focused on the process analysis automation, which is came from the strict data management in semiconductor manufacturing. In this paper, we presents the process analysis system that can analyze causes, for a output after processes. Also, the plasma etching process that highly affects yield among semiconductor process is modeled to predict a output before the process. To approach this problem, we use adaptively trained neural networks that exhibit superior accuracy over statistical techniques. And in comparison with methods in other paper, a method that history of trend for input data is considered is shown to offer advantage in both learning and prediction capability. This research regards CD(Critical Dimension) that is considerable in high integrated circuit as output variable of the prediction model.

  • PDF

전공 영어강의 만족도 및 학습효과 인식에 영향을 미치는 변인에 관한 연구 (Variables Affecting on Learners' Satisfaction and Effects of EMI)

  • 진성희;김학일
    • 공학교육연구
    • /
    • 제16권3호
    • /
    • pp.10-19
    • /
    • 2013
  • Recently, Korean universities have increased the number of English Medium Instruction (EMI) lectures in order to allow students to gain both specialized knowledge and enhanced English ability. Previous researches on effective EMI lectures have focused on exploring the effects of learners' cognitive and affective characteristics on learning outcomes. Whereas the input variables of learning have been investigated as predicting variables of effects in EMI lectures, there has been a few research for investigating process variables to yield learning outcomes. The purpose of this study is to analyze the structural relationships among variables affecting on learner satisfaction and effects. The participants are 209 engineering students from various majors. Independent variables are defined as English motivation, English competency, and English confidence, a mediated variable is Cognitive engagement, and dependent variables are Learning satisfaction and Educational effect perception. The results show that the relationships are statistically significant: learners' English competency & English confidence ${\rightarrow}$ Cognitive engagement ${\rightarrow}$ Learning satisfaction ${\rightarrow}$ Educational effect perception. Especially, the structural model confirms that the effect of learners' English confidence on Learning satisfaction and Educational effect perception is mediated by the level of learners' Cognitive engagement. Further, the implication for effective EMI lectures is discussed based on the observed research results.

A general active-learning method for surrogate-based structural reliability analysis

  • Zha, Congyi;Sun, Zhili;Wang, Jian;Pan, Chenrong;Liu, Zhendong;Dong, Pengfei
    • Structural Engineering and Mechanics
    • /
    • 제83권2호
    • /
    • pp.167-178
    • /
    • 2022
  • Surrogate models aim to approximate the performance function with an active-learning design of experiments (DoE) to obtain a sufficiently accurate prediction of the performance function's sign for an inexpensive computational demand in reliability analysis. Nevertheless, many existing active-learning methods are limited to the Kriging model, while the uncertainties of the Kriging itself affect the reliability analysis results. Moreover, the existing general active-learning methods may not achieve a fully satisfactory balance between accuracy and efficiency. Therefore, a novel active-learning method GLM-CM is constructed to yield the issues, which conciliates several merits of existing methods. To demonstrate the performance of the proposed method, four examples, concerning both mathematical and engineering problems, were selected. By benchmarking obtained results with literature findings, various surrogate models combined with the proposed method not only provide an accurate reliability evaluation while highly alleviating the computational burden, but also provides a satisfactory balance between accuracy and efficiency compared to the other reliability methods.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권3호
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.

Exploring modern machine learning methods to improve causal-effect estimation

  • Kim, Yeji;Choi, Taehwa;Choi, Sangbum
    • Communications for Statistical Applications and Methods
    • /
    • 제29권2호
    • /
    • pp.177-191
    • /
    • 2022
  • This paper addresses the use of machine learning methods for causal estimation of treatment effects from observational data. Even though conducting randomized experimental trials is a gold standard to reveal potential causal relationships, observational study is another rich source for investigation of exposure effects, for example, in the research of comparative effectiveness and safety of treatments, where the causal effect can be identified if covariates contain all confounding variables. In this context, statistical regression models for the expected outcome and the probability of treatment are often imposed, which can be combined in a clever way to yield more efficient and robust causal estimators. Recently, targeted maximum likelihood estimation and causal random forest is proposed and extensively studied for the use of data-adaptive regression in estimation of causal inference parameters. Machine learning methods are a natural choice in these settings to improve the quality of the final estimate of the treatment effect. We explore how we can adapt the design and training of several machine learning algorithms for causal inference and study their finite-sample performance through simulation experiments under various scenarios. Application to the percutaneous coronary intervention (PCI) data shows that these adaptations can improve simple linear regression-based methods.

A study on new control mechanisms of memory

  • Liu, Haibin;Kakazu, Yukinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.324-329
    • /
    • 1992
  • A physical phenomenon is observed through analysis of the Hodgkin-Huxley's model that is, according to Maxwell field equations a fired neuron can yield magnetic fields. The magnetic signals are an output of the neuron as some type of information, which may be supposed to be the conscious control information. Therefore, study on neural networks should take the field effect into consideration. Accordingly, a study on the behavior of a unit neuron in the field is made and a new neuron model is proposed. A mathematical Memory-Learning Relation has been derived from these new neuron equations, some concepts of memory and learning are introduced. Two learning theorems are put forward, and the control mechanisms of memory are also discussed. Finally, a theory, i.e. Neural Electromagnetic(NEM) field theory is advanced.

  • PDF

Greedy Learning of Sparse Eigenfaces for Face Recognition and Tracking

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.162-170
    • /
    • 2014
  • Appearance-based subspace models such as eigenfaces have been widely recognized as one of the most successful approaches to face recognition and tracking. The success of eigenfaces mainly has its origins in the benefits offered by principal component analysis (PCA), the representational power of the underlying generative process for high-dimensional noisy facial image data. The sparse extension of PCA (SPCA) has recently received significant attention in the research community. SPCA functions by imposing sparseness constraints on the eigenvectors, a technique that has been shown to yield more robust solutions in many applications. However, when SPCA is applied to facial images, the time and space complexity of PCA learning becomes a critical issue (e.g., real-time tracking). In this paper, we propose a very fast and scalable greedy forward selection algorithm for SPCA. Unlike a recent semidefinite program-relaxation method that suffers from complex optimization, our approach can process several thousands of data dimensions in reasonable time with little accuracy loss. The effectiveness of our proposed method was demonstrated on real-world face recognition and tracking datasets.

신경회로망 ICA를 이용한 혼합영상신호의 분리 (Blind Image Separation with Neural Learning Based on Information Theory and Higher-order Statistics)

  • 조현철;이권순
    • 전기학회논문지
    • /
    • 제57권8호
    • /
    • pp.1454-1463
    • /
    • 2008
  • Blind source separation by independent component analysis (ICA) has applied in signal processing, telecommunication, and image processing to recover unknown original source signals from mutually independent observation signals. Neural networks are learned to estimate the original signals by unsupervised learning algorithm. Because the outputs of the neural networks which yield original source signals are mutually independent, then mutual information is zero. This is equivalent to minimizing the Kullback-Leibler convergence between probability density function and the corresponding factorial distribution of the output in neural networks. In this paper, we present a learning algorithm using information theory and higher order statistics to solve problem of blind source separation. For computer simulation two deterministic signals and a Gaussian noise are used as original source signals. We also test the proposed algorithm by applying it to several discrete images.

Deep Learning-Based Defect Detection in Cu-Cu Bonding Processes

  • DaBin Na;JiMin Gu;JiMin Park;YunSeok Song;JiHun Moon;Sangyul Ha;SangJeen Hong
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.135-142
    • /
    • 2024
  • Cu-Cu bonding, one of the key technologies in advanced packaging, enhances semiconductor chip performance, miniaturization, and energy efficiency by facilitating rapid data transfer and low power consumption. However, the quality of the interface bonding can significantly impact overall bond quality, necessitating strategies to quickly detect and classify in-process defects. This study presents a methodology for detecting defects in wafer junction areas from Scanning Acoustic Microscopy images using a ResNet-50 based deep learning model. Additionally, the use of the defect map is proposed to rapidly inspect and categorize defects occurring during the Cu-Cu bonding process, thereby improving yield and productivity in semiconductor manufacturing.

  • PDF