• Title/Summary/Keyword: yield behavior

Search Result 1,194, Processing Time 0.035 seconds

A Study on Degradation Characteristic of High Strength Fire Resistance Steel for Frame Structure by Acoustic Emission (음향방출법에 의한 고강도 구조요 내화강의 열화특성에 관한 연구)

  • 김현수;남기우;강창룡
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.51-56
    • /
    • 2000
  • Demand for new nondestructive evaluations is growing to detect tensile crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in tensile test of high strength fire resistance steel for frame structure with time frequency analysis methods. The results obtained are summaries as follows ; In the T and TN specimen consisting of ferrite and pearlite grains, most of acoustic emission events were produced near yield point, mainly due to the dislocation activities during the deformation. However, B specimen under $600^{\circ}C$ - 10min had a two peak which was attribute to the presence of martensite phase. The first peak is before yield point the second is after yield point. The sources of second acoustic emission peak were the debonding of martensite-martensite interface and the micro-cracking of brittle martensite phase. In $600^{\circ}C$-30min to $700^{\circ}C$-60min specimens, many signals were observed from area before yield point and counts were decreased after yield point.

  • PDF

Complete lower bound solutions of circular plate collapse problems by a finite difference method (원형평판의 붕괴문제에 관한 유한차분 완전 하계해)

  • Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1382-1390
    • /
    • 1990
  • Accurate load-carrying capacities and moment distributions of thin circular plates are obtained for clamped or simply-supported boundary condition under various concentrated circular loadings. The material is regarded as perfectly-plastic based on an arbitrary yield function such as the Tresca yield function, the Johansen yield function, and the farmily of .betha.-norms which possesses the von Mises yield function and the Frobenius norm. To obtain the lower bound solutions, a maximization formulation is derived and implemented for efficient numerical calculation with a finite difference method and the modified Newton's method. The numerical results demonstrate plastic collapse behavior of circular plates and provide their design criteria.

Determinants of Corporate Bond Yield: Empirical Evidence from Indonesia

  • MEGANANDA, Danthi;ENDRI, Endri;OEMAR, Fahmi;HUSNA, Asmaul
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.1135-1142
    • /
    • 2021
  • This study aims to examine the factors that determine bond yields in infrastructure companies listed on the Indonesia Stock Exchange. The research sample used 31 bonds issued by the company during the 2015-2019 period. The data analysis method to estimate the determinant of bond yield uses multiple regression models. The results prove that the increase in the coupon rate causes bond yields to increase, while the inflation rate has the opposite effect of decreasing bond yield. Interest rate, exchange rate, duration, and bond rating variables cannot affect the bond yield. The results of this study imply that investors will be interested in investing in bonds with better yields if the company has to set a higher coupon rate, especially in economic conditions that experience low inflation rates. Interest rates and exchange rates as macroeconomic variables have not been considered by investors in purchasing bonds. Bond characteristic factors, namely, the duration and rating of the bonds, are considered less important factors in bond investment decisions because they are more oriented towards getting higher yields. Therefore, further research needs to be explored further related to the behavior of Indonesian bond investors who may have different characters from investors in other countries.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

Effect of Phosphate on Rheological Properties of Gelatinized Rice Starch Solution (인산염이 쌀 전분 호화액의 리올로지에 미치는 영향)

  • Kim, Il-Hwan;Kim, Sung-Kun;Lee, Shin-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.366-370
    • /
    • 1987
  • Rheological properties of gelatinized rice starch solutions (5%) were examined with a Brookifield viscometer. Gelatinized rice starch solutions showed pseudoplastic flow having yield stress, i.e., Binghamplastic flow behavior. The yield stress of gelatinized rice starch solutions was reduced by the phosphate. Phosphate increased the pseudoplasticity of gelatinized nonwaxy rice starch solutions. but decreased that of gelatinized waxy rice starch solution. The yield stress of gelatinized nonwaxy rice starch solutions held for one hour at $90^{\circ}C$ was slightly decreased, but that of waxy starch solution was reduced by 10-fold. Phosphate reduced the yield stress for both gelatinized nonwaxy and waxy rice starch solutions. Phosphate decreased the consistency index, but did not affect the flow behavior index of the gelatinized rice starch solutions.

  • PDF

Effect of Various Gums on Flow Properties and Yield Stress of Korean Sweet Potato Starch (여러 종류의 검 첨가가 국내산 고구마전분의 유동특성 및 Vane 항복응력에 미치는 영향)

  • Choi, Hye-Mi;Yoo, Byoung-Seung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.9
    • /
    • pp.1253-1257
    • /
    • 2009
  • The effects of seven commercial gums (xanthan gum, guar gum, pectin, gum arabic, gellan, locust bean gum, and sodium alginate) at different concentrations (0, 0.3, and 0.6%) on flow properties of sweet potato starch (SPS) pastes were investigated. Flow behavior characteristics were adequately described by power law flow model, and yield stress was also measured by vane method. SPS-gum mixtures (5% w/w) at $25^{\circ}C$ were found to have high shear-thinning flow behavior with yield stress, and their consistency index (K) and apparent viscosity ($\eta_{a,100}$) increased with elevated gum concentration, except for pectin and sodium alginate. Vane yield stress ($\sigma_o$) value of SPS-pectin mixture was lower when compared to other mixtures while that of SPS-gellan mixture was much higher. Most of the gums, except for pectin, gum arabic, and sodium alginate, showed a synergistic effect on the elastic properties of SPS-gum mixtures. In general, the flow properties of SPS-gum mixtures appeared to be strongly influenced by the addition of gum, and dependent on the type and concentration of gum.

Ultimate behavior of long-span steel arch bridges

  • Cheng, Jin;Jiang, Jian-Jing;Xiao, Ru-Cheng;Xiang, Hai-Fan
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.331-343
    • /
    • 2002
  • Because of the increasing span of arch bridges, ultimate capacity analysis recently becomes more focused both on design and construction. This paper investigates the static and ultimate behavior of a long-span steel arch bridge up to failure and evaluates the overall safety of the bridge. The example bridge is a long-span steel arch bridge with a 550 m-long central span under construction in Shanghai, China. This will be the longest central span of any arch bridge in the world. Ultimate behavior of the example bridge is investigated using three methods. Comparisons of the accuracy and reliability of the three methods are given. The effects of material nonlinearity of individual bridge element and distribution pattern of live load and initial lateral deflection of main arch ribs as well as yield stresses of material and changes of temperature on the ultimate load-carrying capacity of the bridge have been studied. The results show that the distribution pattern of live load and yield stresses of material have important effects on bridge behavior. The critical load analyses based on the linear buckling method and geometrically nonlinear buckling method considerably overestimate the load-carrying capacity of the bridge. The ultimate load-carrying capacity analysis and overall safety evaluation of a long-span steel arch bridge should be based on the geometrically and materially nonlinear buckling method. Finally, the in-plane failure mechanism of long-span steel arch bridges is explained by tracing the spread of plastic zones.

A Prediction of Undrained Shear Behavior of the Remolded Weathered Mudstone Soil Using the Constitutive Model (구성모델을 이용한 재성형 이암풍화토의 비배수 전단거동 예측)

  • Lee Sang-Woong;Choo In-Sig;Kim Young-Su;Kim Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.31-40
    • /
    • 2005
  • This study proposed a new yield function considering the spacing ratio of the critical state to predict the undrained shear behavior of anisotropic field ground. We have suggested a nonassociated constitutive model that used a newly modified plastic potential function in order to apply the yield function of the modified Cam-Clay model to the anisotropic consolidation. In this paper, we predicted undrained shear behavior of the remolded weathered mudstone soils in Phohang isotorpically and anisotropically consolidated using the suggested model. To evaluate the reliability of proposed model, we predictied undrained shear behavior of Bankok Clay isotropically, nomally consolidated and Drammen Clay Ko consolidated. The predicted results are consistent with the observed behavior.

Inelastic behavior of systems with flexible base

  • Fernandez-Sola, Luciano R.;Huerta-E catl, Juan E.
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.411-424
    • /
    • 2018
  • This study explores the inelastic behavior of systems with flexible base. The use of a single degree of freedom system (ESDOF) with equivalent ductility to represent the response of flexible base systems is discussed. Two different equations to compute equivalent ductility are proposed, one which includes the contribution of rigid body components, and other based on the overstrength of the structure. In order to asses the accuracy of ESDOF approach with the proposed equations, the behavior of a 10-story regular building with reinforced concrete (RC) moment resisting frames is studied. Local and global ductility capacity and demands are used to study the modifications introduced by base flexibility. Three soil types are considered with shear wave velocities of 70, 100 and 250 m/s. Soil-foundation stiffness is included with a set of springs on the base (impedance functions). Capacity curves of the building are computed with pushover analysis. In addition, non linear time history analysis are used to asses the ductility demands. Results show that ductility capacity of the soil-structure system including rigid body components is reduced. Base flexibility does not modify neither yield and maximum base shear. Equivalent ductility estimated with the proposed equations is fits better the results of the numerical model than the one considering elastoplastic behavior. Modification of beams ductility demand due to base flexibility are not constant within the structure. Some elements experience reduced ductility demands while other elements experience increments when flexible base is considered. Soil structure interaction produces changes in the relation between yield strength reduction factor and structure ductility demand. These changes are dependent on the spectral shape and the period of the system with fixed and flexible base.

Dynamic Characteristics of Reinforced concrete axisymmetric shell with shape imperfection (형상불완전을 갖는 철근 콘크리트 축대칭 쉘의 동적 특성)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.151-159
    • /
    • 2000
  • Dynamic loading of structures often causes excursions of stresses will into the inelastic range and the influence of geometry changes on the response is also significant in may cases. In general , the shell structures designed according to quasi-Static analysis may collapse under condition of dynamic loading. Therefore, for a more realistic prediction on the lad carrying capacity of these shell. both material and geometric nonlinear effects should be considered. In this study , the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a Total Lagrangian formulation. the reinforcing bars are modeled by the equivalent steel layer at the location of reinforcements, and Von Mises yield criteria is adopted for the steel layer behavior. Also, Drucker-Prager yield criteria is applied for the behavior of concrete. the shape imperfection of dome is assumed as 'dimple type' which can be expressed Wd1=Wd0(1-(r-a)m)n while the shape imperfection of wall is assumed as sinusoidal curve which is Wwi =Wwo sin(n $\pi$y/l). In numerical test, three cases of shape imperfection of 0.0 -5.0cm(opposite direction to loading ; inner shape imperfection)and 5cm (direction to loading : outward shape imperfection) and thickness of steel layer determined by steel ratio of 0,3, and 5% were analyzed. The effect of shape imperfection and steel ratio and behavior characteristics of perfect shape shell and imperfect shape shell are identified through analysis of above mentioned numerical test. Dynamic behaviors of dome and wall according toe combination of shape imperfection and steel ratio are also discussed in this paper.

  • PDF