• Title/Summary/Keyword: yellowfin tuna

Search Result 57, Processing Time 0.024 seconds

Chemical composition of protein concentrate prepared from Yellowfin tuna Thunnus albacares roe by cook-dried process

  • Lee, Hyun Ji;Park, Sung Hwan;Yoon, In Seong;Lee, Gyoon-Woo;Kim, Yong Jung;Kim, Jin-Soo;Heu, Min Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.3
    • /
    • pp.12.1-12.8
    • /
    • 2016
  • Roe is the term used to describe fish eggs (oocytes) gathered in skeins and is one of the most valuable food products from fishery sources. Thus, means of processing are required to convert the underutilized yellowfin tuna roes (YTR) into more marketable and acceptable forms as protein concentrate. Roe protein concentrates (RPCs) were prepared by cooking condition (boil-dried concentrate, BDC and steam-dried concentrate, SDC, respectively) and un-cooking condition (freeze-dried concentrate, FDC) from yellowfin tuna roe. The yield of RPCs was in the range from 22.2 to 25.3 g/100 g of roe. RPCs contained protein (72.3-77.3 %), moisture (4.3-5.6 %), lipid (10.6-11.3 %) and ash (4.3-5.7 %) as the major constituents. The prominent amino acids of RPCs were aspartic acid, 8.7-9.2, glutamic acid, 13.1-13.2, and leucine, 8.5-8.6 g/100 g of protein. Major differences were not observed in each of the amino acid. K, S, Na, and P as minerals were the major elements in RPCs. No difference noted in sodium dodecyl sulfate polyacrylamide gel electrophoresis protein band (15-100 K) possibly representing partial hydrolysis of myosin. Therefore, RPCs from YTR could be use potential protein ingredient for human food and animal feeds.

The fishing characteristics of Korean tuna purse seine fishery in the Pacific Ocean (태평양 수역 우리나라 다랑어선망어업의 어획특성)

  • LEE, Mi Kyung;LEE, Sung Il;KIM, Zang Geun;KU, Jeong Eun;PARK, Hee Won;YOON, Sang Chul
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.3
    • /
    • pp.414-423
    • /
    • 2015
  • Fishing trend and characteristics of Korean tuna purse seine fishery in the Pacific Ocean were investigated using logbook data compiled from captain onboard and the statistical data from 1980 to 2013. The historical catch of this fishery had sharply increased since mid-1980s, and it has shown fluctuations with about 2-3 hundred thousands, whereas the catch per number of vessel has steadily increased with fluctuations since commencing this fishery. As for the proportion of catch by set type, unassociated type had increased from the mid-1980s to the end of 1990s, and then has decreased up to 2010s. Associated type had decreased continually to the end of 1990s, however, it started to increase since the beginning of 2000s. As for the catch proportion of set type by main species, those of skipjack tuna and bigeye tuna showed higher in the associated type, whereas that of yellowfin tuna has the highest proportion in the unassociated type. Fishing distribution of Korean tuna purse seine fishery was concentrated on the area of $5^{\circ}N{\sim}10^{\circ}S$ and $140^{\circ}E{\sim}180^{\circ}$ through the decades. The monthly catch distribution by longitudinal zone of Korean tuna purse seine fishery expanded the most further to the eastward in September to October.

Effect of Phosphate Treatment on Yield and Quality of Canned Tuna (인삼염처리가 다랑어 통조림의 수율과 품질에 미치는 영향(影響))

  • Son, Chung-Hyun;Niven, C.F. Jr
    • Korean Journal of Food Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.47-60
    • /
    • 1977
  • A $7{\sim}10%$ aqueous phosphate solution comprised of 85% sodium tripolyphosphate and 15% sodium hexametaphosphate was injected into tuna flesh prior to precook until the fish weight increased approximately $4{\sim}10%$. The experiments were conducted at a commercial tuna processing plant using Yellowfin tuna (Thunnus albacares) of $45{\sim}68kg$ and $7.3{\sim}10.5kg$ sizes, and Skipjack tuna (Euthynnus pelamis) of $4.5{\sim}5.0kg$ size. The experimental results showed that the phosphate treatment resulted in: 1. Approximately $5{\sim}8%$ increase in yield and somewhat more moist meat with the large Yellowfin. 2. Approximately $3{\sim}8%$ increase in yield with the smaller Yellowfin. 3. Approximately $1{\sim}4%$ increase in yield with the Skipjack. 4. Minimal improvement in color and flavor.

  • PDF

Kinetic Analyses for Enzymatic Properties of Trypsins Purified from Dark-Fleshed Fish (혈합육어 Trypsin의 효소적 성질에 대한 반응속도론적 해석)

  • CHO Deuk-Moon;HEU Min-Soo;KIM Hyeung-Rak;KIM Doo-Sang;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.64-70
    • /
    • 1996
  • Kinetic properties of typsins purified from dark-fleshed fish (anchovy, mackerel, yellowfin tuna, and albacore) were examined and analyzed on $benzoyl-_{D,L}-arginine-p-nitroanilide\;(BAPNA)$. The values of Km' and $k_{cat}$ of the purified trypsins from the four dark-fleshed fish were found to be $49.3{\mu}M$ and $90.9\;min^{-1}$ for anchovy, $53.7{\mu}M$ and $61.2min-^{-1}$ for mackerel A, $96.5{\mu}M$ and $76.6min^{-1}$ for mackerel B, $62.8{\mu}M$ and $46.6min^{-1}$ for yellowfin tuna, and $98.3{\mu}M$ and $47.7min^{-1}$ for albacore, respectively. The values of $K_i$ on $tosyl-_L-lysine$ chloromethyl ketone (TLCK) were determined to be $20.90{\mu}M$ for anchovy trypsin, $2.86{\mu}M$ for mackerel trypsin A, $3.90{\mu}M$ for mackerel trypsin B, $0.96{\mu}M$ for yellowfin tuna trypsin, and $1.82{\mu}M$ for albacore trypsin. Thus yellowfin tuna trypsin was the most sensitive to TLCK among all trypsins. The activities and catalytic efficiency of the trypsins purified from the temperate zone fish, anchovy and mackerel, were higher than those of the trypsins purified from yellowfin tuna and albacore which migrate widely from the tropic zone to the temperate zone.

  • PDF

On the Log-Associated School Fishery of Korean Tuna Purge Seiners (한국 다랭이 선망어선의 유목조업에 관하여)

  • Moon Dae Yeon;LEE Jang Uk;KIM Jong Bin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.197-207
    • /
    • 1996
  • The proportion of log-associated school catches by Korean tuna purse seiners in the western Pacific has shown a declining trend until recent years. During the period $1990\~1995$, log-associated school catches contributed $34.6\%$ to the total Korean tuna purse seine catch, representing quite a low level compared to the early phase of the purse seine fishery. Species compositions of both log-associated and free-school catches showed that skipjack, Katswonus pelamis, was dominant species and yellowfin, Thunnus albacares, followed, with the small amount of bigeye tunas, T. obesus, Yellowfin proportion was higher in free-school catches than in log-associated school catches. Log-associated school catches monitored during the scientific observation period were made of $60\%$ skipjack, $38\%$ yellowfin, and $2\%$ bigeye tunas, indicating the low skipjack and high yellowfin proportion compared with historical fisheries data based on logbooks. A total of 11 by-catch species were identified, of which sharks occurred together with tunas in all sets and yellowtail kingfish was the most abundant by-catch species. From the length distribution it was found that small yellowfin less than 70 cm mainly distributed around floating objects.

  • PDF

Relationship Between the Catches and the Water Temperature of Tuna in the Pacific Ocean - The Operating Results of M . S #27 Cheng Rong at Eastern Fishing Ground of Tropical Rigion - (태평양 다랑어 어장의 어획량과 수온과의 관계-청룡 제27호의 열대해역 동부어장에서의 조업결과-)

  • 김광홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.24-32
    • /
    • 1996
  • This paper described on relation between the catches of tuna and the distribution of water temperature of eastern fishing ground of Tropical region in the Pacific Ocean. The data of catches and water temperature used in this paper were based log book which # 27 CHENG RONG(Gross tonnage : 399 ton) had been worked eastern fishing ground(Lat : 09$^{\circ}$N- 14$^{\circ}$S, Long : 115$^{\circ}$- 149$^{\circ}$W)from January to October, 1991. The obtained result are as follows : 1. On the relation between the catches and the geographical distribution, bigeye tuna was higher catches at Lat 4$^{\circ}$- 9$^{\circ}$N, Long 135$^{\circ}$- 139$^{\circ}$W area in the equatorial counter current region where surface water temperature was range of 27.5$^{\circ}C$ to 27.9$^{\circ}C$, yellowfin tuna was higher catches at Lat 4$^{\circ}$- 9$^{\circ}$S, Long 145$^{\circ}$- 149$^{\circ}$W in the south equatorial current region where surface water temperature was range of 28.$0^{\circ}C$ to 28.4$^{\circ}C$ and albacore tuna was higher catches at Lat 10$^{\circ}$- 14$^{\circ}$S, Long 120$^{\circ}$- 124$^{\circ}$W area in the south equatorial current region where surface temperature was range of 26.5$^{\circ}C$ to 26.9$^{\circ}C$ 2. On the relation between catches and distribution of vertical water temperature, bigeye tuna was higher catches at the water temperature of 1$0^{\circ}C$ to 12$^{\circ}C$ on depth layer between 300m and 360m, yellowfin tuna was higher catches at the water temperature of 15$^{\circ}C$ to 19$^{\circ}C$ on depth layer between 180m and 280m and albacore tuna was higher catches at the water temperature of 12$^{\circ}C$ to 14$^{\circ}C$ on depth layer between 280m and 310m. Above the result, it seemed that bigeye tuna distributed deeper layer than yellowfin and albacore tuna.

  • PDF

Standardization of CPUE for bigeye(Thunnus obesus) and yellowfin(Thunnus albacares) tunas by the Korean longline fishery in the Indian Ocean (우리나라 다랑어연승어업에 의한 인도양해역 눈다랑어(Thunnus obesus) 및 황다랑어(Thunnus albacares)의 CPUE 표준화)

  • Kwon, You-Jung;An, Doo-Hae;Lee, Jae-Bong;Zhang, Chang-Ik;Moon, Dae-Yeon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.194-206
    • /
    • 2008
  • This study standardized catch per unit effort(CPUE) of the Korean longline fishery, which has been used to assess the status of stock as an index of abundance, for bigeye and yellowfin tunas in the Indian Ocean. The Generalized Linear Model(GLM) was used to analyze the fishery data, which were catch in number and effort data collected each month from 1971 to 2007 by $5\;{\times}\;5$ degree of latitude and longitude. Explanatory variables for the GLM analysis were year, month, fishing area, number of hooks between floats(HBF), and environment factors. The HBF was divided into three classes while the area was divided into eight subareas. Although sea surface temperature(SST) and southern oscillation index(SOI) were considered as environmental factors, only SST was used to build a model based on statistical significance. Standardized CPUE for yellowfin tuna showed a declining trend, while nominal CPUE for the species showed an increasing trend.

Effects of Extraction Methods on Histidine-containing Low-molecular Weight Peptides and Pro-oxidants Contents in Tuna Thunnus Extracts (다랑어(Thunnus) 추출물 중의 Histidine 함유 저분자 펩타이드 및 산화촉진물질 함량에 미치는 추출방법의 영향)

  • Kim, Hong-Kil;Song, Ho-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.684-693
    • /
    • 2017
  • We investigated methods for extracting histidine-containing low-molecular-weight (LMW) peptides such as anserine, carnosine and histidine from the edible meat of tuna byproducts. Extracts were treated by several methods including heat treatment ($80^{\circ}C$, 10 min), DOWEX ion exchange (IEC), ultrafiltration (UF), and carboxymethyl (CM)-cellulose column chromatography (IEC+CMC); then the levels of protein, total iron, histidine, carnosine, and anserine were measured. Extracts treated with IEC+CMC using CM-cellulose were analyzed for total iron, protein, histidine, and anserine content, which were $6.27{\pm}0.26mg/mL$, $5.20{\pm}0.21{\mu}g/mL$, 0.80 mg/mL, 0.208 mg/mL, and 4.40 mg/mL, respectively, in yellowfin tuna; and $9.05{\pm}0.82mg/mL$, $4.06{\pm}0.20{\mu}g/mL$, 1.62 mg/mL, 0.012 mg/mL, and 7.28 mg/mL in bigeye tuna. By comparison in IEC-UF treated extracts, protein, total iron, and histidine content decreased by 43%, 73%, and 27% in yellowfin and 0.4%, 54%, and 23% in bigeye tuna, wheres carnosine and anserine content increased by 22% and 17%, respectively. Freeze-dried (FD) extracts exhibited similar trends as non-dried extracts, i.e., dipeptide content increased with purification steps, whereas pro-oxidant (total iron and protein) content decreased. IEC+CMC treated FD extracts had the highest anserine, content, and the greatest reductuion in pro-oxidants.

Effects of Extraction Method on the Histidine Containing Low Molecular Weight Peptide and Pro-oxidants Contents of Tuna Boiled Extracts (참치자숙액 추출물 중의 히스티딘계 저분자 펩타이드 및 산화촉진물질 함량에 미치는 추출방법의 영향)

  • Kang, Ok-Ju
    • Korean journal of food and cookery science
    • /
    • v.24 no.3
    • /
    • pp.349-357
    • /
    • 2008
  • In an effort to augment extractability of carnosine and anserine at the levels of pro-oxidants such as iron and protein in Tuna boiled extracts(Skipjack, Yellowfin and Bigeye), we assessed the effects of heated and ion exchange chromatography(IEC) and ultrafiltration(UF) using a MW 500 cut-off(500 MWCO). We also evaluated the antioxidant activity of these extracts processed as free radical scavengers and reducing agents. Tuna boiled extracts of dark and ordinary muscle protein and total iron were reduced, whereas carnosine and anserine concentrations and antioxidant activity were increased. The carnosine and anserine concentrations of the ion exchange and permeate UF(IEC-UF) extracts were higher than those observed in the heated and permeate UF(heat-UF), whereas the protein and total iron contents were lower than that observed in the heat-UF. The quantity of carnosine and anserine in ordinary muscle was higher than that detected in dark muscle. HPLC analysis and SDS-PAGE were shown to removes the effect of UF on high molecular weight impurities in the tuna boiled extracts. The major free amino acids(FFAs) from Skipjack, Yellowfin and Bigeye tuna IEC-UF extracts were anserine, histidine and carnosine. These three peptides constituted more than 80~85%. of the detected amino acid. The IEC-UF treated ordinary muscle extracts evidenced the highest levels of DPPH radical scavenging activity and the highest levels of reducing power among the various extracts. The IEC-UF extracts evidenced a DPPH radical scavenging effect equal to that of 1mM ascorbic acid.

Processing Optimization and Physicochemical Characteristics of Collagen from Scales of Yellowfin Tuna (Thunnus albacares)

  • Han, Yuna;Ahn, Ju-Ryun;Woo, Jin-Wook;Jung, Cheol-Kyun;Cho, Sueng-Mock;Lee, Yang-Bong;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.102-111
    • /
    • 2010
  • This study was conducted to investigate the optimal conditions of collagen extraction from scales of yellowfin tuna (Thunnus albacares) using surface response methodology. Four independent variables of NaOH concentration and pretreatment fime in alkali pretreatment and enzyme concentration and treatment time in enzyme hydrolysis were used to predict a model equation for the collagen yield. The determinant coefficient ($R^2$) for the equation was 0.906. The values of the independent variables for the maximum yield were 0.32 N NaOH, 16.38 h alkali pretreatment time, 0.18% enzyme concentration, and 31.02 h enzyme treatment time. In the physicochemical properties of tuna scale collagen, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of tuna scale collagen showed the same migration distances as that of calf skin collagen. The amide A, I, II, and III regions of tuna scale collagen in Fourier transform infrared measurements were shown in the peaks of 3,414 $cm^{-1}$, 1,645 $cm^{-1}$, 1,553 $cm^{-1}$, and 1,247 $cm^{-1}$, respectively. The amount of imino acids in tuna scale collagen was 18.97% and the collagen denaturation temperature was $33^{\circ}C$. The collagen solubility as a function of NaCl concentration decreased to 4% NaCl (w/v) and the collagen solubility as a function of pH was high at pH 2-4 and sharply decreased from pH 4 to pH 7. Viscosity of the collagen solution decreased continuously until $30^{\circ}C$ and this decreasing rate slowed in the temperature range of $35-50^{\circ}C$.