• Title/Summary/Keyword: yeast selection

Search Result 87, Processing Time 0.032 seconds

Optimized Serological Isolation of Lung-Cancer-associated Antigens from a Yeast Surface-expressed cDNA Library

  • Kim, Min-Soo;Choi, Hye-Young;Choi, Yong-Soo;Kim, Jhin-Gook;Kim, Yong-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.993-1001
    • /
    • 2007
  • The technique of serological analysis of antigens by recombinant cDNA expression library (SEREX) uses autologous patient sera as a screening probe to isolate tumor-associated antigens for various tumor types. Isolation of tumor-associated antigens that are specifically reactive with patient sera, but not with normal sera, is important to avoid false-positive and autoimmunogenic antigens for the cancer immunotherapy. Here, we describe a selection methodology to isolate patient sera-specific antigens from a yeast surface-expressed cDNA library constructed from 15 patient lung tissues with non-small cell lung cancer (NSCLC). Several rounds of positive selection using patient sera alone as a screening probe isolated clones exhibiting comparable reactivity with both patient and normal sera. However, the combination of negative selection with allogeneic normal sera to remove antigens reactive with normal sera and subsequent positive selection with patient sera efficiently enriched patient sera-specific antigens. Using the selection methodology described here, we isolated 3 known and 5 unknown proteins, which have not been isolated previously, but and potentially associated with NSCLC.

Selection of Enhanced Iron Uptake Yeast Mutants by EMS Mutagenesis. (EMS에 의하여 철 함유 능력이 증진된 효모 돌연변이주의 선별)

  • 양승남;송형석;이중림;김해영
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.435-438
    • /
    • 2003
  • Iron required by all organisms is related with diverse biological processes. Most eukaryotes need extra iron to maintain their nutrition balance. However, extra iron supplement gives many problem to solubility in the cells. To increase the bio-availability of iron in cells, yeast was applied to carry the iron with solubility. Selection of yeast mutants with enhanced iron uptake were performed by mutagenesis using the alkylation agent EMS. Eleven mutant strains with enhanced iron uptake were selected by the measurement of iron content with atomic absorption spectrometer. The iron content in mutants was 1.5- to 2.5-fold more than that in wild-type. These mutants could be served as iron-fortified nutrients for food and feed.

A plasmid vector faciliting gene expression in both yeast and mammalian cells

  • Lee, Tae-Ho
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.149-151
    • /
    • 1997
  • A plasmid vector with combined features of yeast shuttle vector and mammalian expression vector was constructed to facilitate expression of cloned gene in both cell-types. All necessary elements required for plasmid maintenance and selection in E. coli, yeast and mammalian cells were size-economically arranged in this plasmid. The numan cytomegalovirus (CMV) immediate early promoter and yeast GAL1 promoter were sequentially placed in front of the gene to be expressed. The synthetic splicing donor and acceptor sequences were inserted into the immediate upstream and downstream of the GAL1 promotor, allowing the CMV promotor to direct the expression of a given gene in mammalian cell environment by splicing out the interfering GAL1 promotor sequence. When the resulting vector containing LacZ as a gene was introduced into yeast and mammalian cells, both cells efficiently produced .betha.-galactosidase, dimonstrating its dual host usage.

  • PDF

Distiller's Yeast Discovery for Industrial Application

  • Kim, Tae Wan;Ahn, B.H.;Kim, H.R.;Lee, J.E.;Kim, J.H.
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.23-23
    • /
    • 2014
  • There are many yeast strains have been discovered for industrial usage in global scale. In the point of view for the alcoholic fermentation performance and producing alcoholic beverage products, recently many countries have known about the importance of microorganisms as a valuable resource. Discovered with well performed yeasts have potential industrial application in diverse ways such as foods, beverages, cosmetics, pharmaceutical functions, and so on. In Korea, the yeast research has not been sufficiently performed especially for distilled spirits industry. As a result, not so little manufacturers use exotic yeasts from overseas even included the expensive royalties. Besides of those, to produce distilled spirits, many manufacturers do not use specialized yeast for distilled spirits. Distiller's characterized yeasts such as whisky, brandy, vodka, Japanese shochu and awamori, are all well-known industrialized. For decades, the distillers, except us, have selected, developed, and practised yeasts in accordance with distilled spirits characters. This study is about selection and industrial application of yeasts for the Korean pot distilled spirits. Finally 7 yeast strains were selected among over 1,000 yeasts from the traditional Nuruks, through the essential related tests based on brewing and distilling science. The selected yeasts show the appropriate characteristics of distilled spirits. The result of this study could help our distilled spirits industry be activated and stand independent from the exotic microbes.

  • PDF

Biotechnological Characteristics of Some Saccharomyces species Isolated from Wine Yeast Culture

  • Letitia, Oprean
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.722-726
    • /
    • 2005
  • The use of isolated wine yeasts in winemaking processes is preferable to spontaneous fermentation. Selection criteria of wine yeast strains depend also on capacity and rate of fermentation and on alcohologenic capabilities. Our studies have described the dynamics of fermentation of wine musts by some isolated wine yeast strains of Saccharomyces genus: strains 6 and 8 of S. cerevisiae var. ellipsoideus (S. ellipsoideus) and strains 5 and 7 of S. bayanus var. oviformis (S. oviformis). All have high technological properties and all are adapted for the specific pedoclimatic conditions of some areas of Sibiu viticultural region. The selected strains were used as inocula to ferment Sauvignon, Muscat Ottonel, Rose Traminer, and Pino Gris musts in controlled laboratory conditions. It was found that higher initial oxygen concentration in must is necessary to accelerate the fermentation of all the wine yeast strains studied. In order to obtain quality wines, strains with considerable fermentative capacity, high alcohologenic capabilities, and a good conversion efficiency are recommended.

Isolation of Ethanol-tolerant Strains of Yeast in Relation to Their Tolerant Mechanism (에탄올 내성 효모의 선별과 그의 에탄올 내성 기작)

  • 지계숙;박소영;이지나;이영하;민경희
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.136-142
    • /
    • 1991
  • The selection of ethanol-tolerant strains was applied to enrichment culture of YPD broth medium containing various concentrations of ethanol. Isolates were identified to be Saccharomyces cerevisiae, the others as S. dairensis, S. exiguus, S. telluris, Saccharomycodes ludwigii, Schwanniomyces occidentalis var. occidentalis and Zygosaccharomyces florentinus. Among isolates S. cerevisiae YO-1 was screened as having the highest ethanol tolerance and produced 18% (v/v) ethanol after 4 days fermentation. The change of fatty-acyl residues represents that a progressive decrease in fatty-acyl unsaturation and a proportional increase in saturation in phospholipids of yeast cells during fermentation affected the yeast viability. Supplementation ethanol to the cultures led to an increase of unsaturated fatty-acyl residues, especially $C_{16}$ or $C_{18}$ residues, along with a decrease in the proportion of saturated residues in cellular phospholipids. Increasing the amount of soy flour led to an increase in the maximum number of viable yeast cells and ethanol production. It was possible in 4 days to reach 21% (v/v) ethanol by adding 4% soy flour as source of unsaturated fatty-acyl residues to the fermentation medium. Soy flour not only increased yeast population but also enhanced the physiological properties of yeast cells to be ethanol tolerant in the anaerobic culture.

  • PDF

Selection and Isolation of a Mutant Yeast Strain Tolerant to Multiple Targeted Heavy Metals

  • Lee, Sangman
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.129-133
    • /
    • 2014
  • BACKGROUND: This study was performed for selecting yeast mutants with a high tolerance for targeted metals, and determining whether yeasts strains tolerant to multiple heavy metals could be induced by sequential adaptations. METHODS AND RESULTS: A mutant yeast strain tolerant to the heavy metals cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) was selected by sequential elevated exposures to each metal with intermittent mutant isolation steps. A Cd-tolerant mutant was isolated by growing yeast cells in media containing $CdCl_2$ concentrations that were gradually increased to 1 mM. Then the Cd-tolerant mutant was gradually exposed to increasing levels of $CuCl_2$ in growth media until a concentration of 7 mM was reached, thus generating a strain tolerant to both Cd and Cu. In the subsequent steps, this mutant was exposed to $NiCl_2$ (up to 8 mM), and a resultant isolate was further exposed to $ZnCl_2$ (up to 60 mM), allowing the derivation of a yeast mutant that was simultaneously tolerant to Cd, Cu, Ni, and Zn. CONCLUSION: This method of inducing tolerance to multiple targeted heavy metals in yeast will be useful in the bioremediation of heavy metals.

The Use of Aureobasidin A Resistant Gene as the Dominant Selectable Marker for the Selection of Industrial Yeast Hybrid (산업용 효모 Hybrid의 선별을 위한 우성선별표지로서의 Aureobasidin A 내성유전자의 이용)

  • Jeon, Han-Taek;Park, Uhn-Mee;Kim, Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.111-118
    • /
    • 2011
  • For the strain improvement of the industrial polyploid yeast strain through hybridization and protoplast fusion, a dominant selection marker other than a recessive marker such as the auxotrophic marker was required for the selection of the resulting hybrids. In the present investigation, the aureobasidin A resistant gene was tested in relation to whether it can be used as the dominant selectable marker for the isolation of hybrids of the yeast Saccharomyces. The plasmid pAUR112, carrying the gene responsible for resistance to aureobasidin A, was introduced into the haploid yeast strain K114/YIp. From the rare-mating between polyploid C6 and haploid K114/YIp carrying pAUR112, many hybrids were obtained from the agar medium containing 0.5 ${\mu}g$/ml of aureobasidin A. The hybrids exhibited characteristics derived from both of the parental strains; and the cell sizes of the hybrids were larger than those of the parental strains. These results showed that the aureobasidin A resistant gene could be successfully used as the dominant selectable marker for the isolation of yeast hybrids resulting from rare-mating.

A study on the resistance of saccharomyces cerevisiae to copper sulfate (유산동에 대한 Saccharomyce cerevisiae의 저항성에 관한 연구)

  • 이민재;이진기
    • YAKHAK HOEJI
    • /
    • v.3 no.1
    • /
    • pp.15-20
    • /
    • 1957
  • Resume 1. The toxic effect of $CuSO_4$ on the growth of yeast began in the 0.2mM and colony formation was completely inhibited in the 3mM $CuSO_4$ media. 2. The yeast strain which was trained sucessively from lower concentration media to higher one, could grow even in 10mM $CuSO_4$ media. 3. Rlb strain produced brown pigment in copper media. 4. Resistance of Rlb strain to $CuSO_4$ did not revert in non copper media. 5. The appearance of resistant strain was regarded as the result of "Mutation and Selection". 6. The alcohol fermentation ability of Rlb strain was lower than that of parent strain. 7. Rlb strain yielded some effective substance which induced the parent strain to resist against $CuSO_4$. 8. The dehydrogenase activity of yeast was inhibited by $CuSO_4$.

  • PDF

Salmonella sp. 의 신속한 동정을 위한 증진배양의 개선에 관한 연구

  • Kim, Kee-Tae;Kim, Tae-Ue;Yook, Soon-Hak;Pek, Un-Hua
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.6
    • /
    • pp.647-651
    • /
    • 1996
  • The development of an enrichment method for the rapid and effective identification of Salmonella spp. in sewage or food was studied. As a growth factor for Salmonella, 10 mM cyclic adenosine monophosphate (cAMP) in trypticase soy broth with 0.6% yeast extract (TSBYE) increased cell number five-folds and 0.6% yeast extract in selenite broth increased cell number ten-folds of control. Bile salts in selenite broth was tested for the selection of S. enteritidis in a mixture with Staphylococcus aureus, Pseudomonas aeruginosa, Lactobacillus plantarum and Escherichia coli. The latter four strains were effectively inhibited at 0.1% bile salt. A two-step culture method was used to enrich Salmonella spp.; a primary-enrichment and secondary- enrichment culture. At a primary-enrichment step, selenite broth with 0.6% yeast extract and 10 mM cAMP was used, and at a secondary-enrichment step, 0.1% bile salt was additionally used. Culture times of a primary- enrichment and a secondary-enrichment step were 8 hr and 6 hr, respectively. In this procedure, cell number increased from 10$^{0.3}$ to 10$^{8.5}$ with inhibition of other strains within 14 hr. In the case of an initial cell concentrarion as low as 10$^{-2}$ cfu/ml, a cell number increased to 10$^{7}$ cfu/ml by using a 10 hr primary-enrichment and 6 hr secondary-enrichment procedure.

  • PDF