1 |
Ruta, L., Paraschivescu, C., Matache, M., Avramescu, S., Farcassanu, I.C. 2010. Removing heavy metals from synthetic effluents using "kamikaze" Saccharomyces cerevisiae cells, Appl. Microbiol. Biotechnol. 85, 763-771.
DOI
|
2 |
Lee, S., Kim, J.H., 2010. Establishment of tolerance to both cadmium and copper stress by expressing Arabidopsis phytochelatin synthase in Cu tolerant yeast mutant, J. Korean Soc. Appl. Biol. Chem. 53, 94-96.
과학기술학회마을
DOI
|
3 |
Rehman, A., Farooq, H., Hasnain, S., 2008. Biosorption of copper by yeast, Loddermyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment, J. Basic Microbiol. 48, 195-201.
DOI
ScienceOn
|
4 |
Serero, A., Lopes, J., Nicolas, A., Boiteux, S., 2008. Yeast genes involved in cadmium tolerance: Identification of DNA replication as a target of cadmium toxicity, DNA Repair 7, 1262-1275.
DOI
ScienceOn
|
5 |
Soares, E.V., Soares, H.M., 2012. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review, Environ. Sci. Pollut. Res. Int. 19, 1066-1083.
DOI
|
6 |
Villegas, L.B., Amoroso, M.J., deFigueroa, L.I.C., 2005. Copper tolerant yeasts isolated from polluted area of Argentina, J. Basic Microbiol. 45, 381-391.
DOI
ScienceOn
|
7 |
Zafar, S., Aquil, F., Ahmad, I., 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil, Bioresource Technol. 98, 2557-2561.
DOI
ScienceOn
|
8 |
Diaz-Ravina, M., Baath, E., 1996. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels, Appl. Environ. Microbiol. 62, 2970-2977.
|
9 |
Diaz-Ravina, M., Baath, E., 2001. Response of bacterial communities pre-exposed to different metals and reinoculated in an unpolluted soil, Soil Biol. Biochem. 33, 241-248.
DOI
ScienceOn
|
10 |
Duxbury, T., Bicknell, B., 1983. Metal-tolerant bacterial populations from natural and metal-polluted soils, Soil Biol. Biochem. 15, 243-250.
DOI
ScienceOn
|
11 |
Gad, A.S., Attia, M., Ahmed, H.A., 2010. Heavy metals bio-remediation by immobilized Saccharomyces cerevisiae and Opuntia ficus indica waste, J. American Sci. 6, 79-87.
|
12 |
Gaur, N., Flora, G., Yadav, M., Tiwari, A., 2014. A review with recent advancements on bioremediationbased abolition of heavy metals, Environ. Sci. Processes Impacts 16, 180-193.
DOI
ScienceOn
|
13 |
Giaginis, C., Gatzidou, E., Theocharis, S., 2006. DNA repair systems at targets of cadmium toxicity, Toxicol..l Appl. Pharmacol. 213, 282-290.
DOI
ScienceOn
|
14 |
Gin, Y.H., Clark, A.B., Slebos, R.J., Al-Rafai, H., Taylor, J.A., Kundel, T.A., Resnick, M.A., Gordenin, A., 2003. Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Gen. 34, 326-329.
DOI
ScienceOn
|