Browse > Article

The Use of Aureobasidin A Resistant Gene as the Dominant Selectable Marker for the Selection of Industrial Yeast Hybrid  

Jeon, Han-Taek (Department of Bioscience and Biotechnology, The University of Suwon)
Park, Uhn-Mee (Department of Bioscience and Biotechnology, The University of Suwon)
Kim, Keun (Department of Bioscience and Biotechnology, The University of Suwon)
Publication Information
Microbiology and Biotechnology Letters / v.39, no.2, 2011 , pp. 111-118 More about this Journal
Abstract
For the strain improvement of the industrial polyploid yeast strain through hybridization and protoplast fusion, a dominant selection marker other than a recessive marker such as the auxotrophic marker was required for the selection of the resulting hybrids. In the present investigation, the aureobasidin A resistant gene was tested in relation to whether it can be used as the dominant selectable marker for the isolation of hybrids of the yeast Saccharomyces. The plasmid pAUR112, carrying the gene responsible for resistance to aureobasidin A, was introduced into the haploid yeast strain K114/YIp. From the rare-mating between polyploid C6 and haploid K114/YIp carrying pAUR112, many hybrids were obtained from the agar medium containing 0.5 ${\mu}g$/ml of aureobasidin A. The hybrids exhibited characteristics derived from both of the parental strains; and the cell sizes of the hybrids were larger than those of the parental strains. These results showed that the aureobasidin A resistant gene could be successfully used as the dominant selectable marker for the isolation of yeast hybrids resulting from rare-mating.
Keywords
Dominant selectable marker; aureobasidin A resistancy; hybrid; rare-mating;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Hashida-Okado, T., A. Ogawa, R. Yasumoto, K. Takesako, and I. Kato. 1996. AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae : a study of defective morphologies in Aur1p-depleted cells. Mol. Gen. Genet. 251: 236-244.
2 Heidler, S. A. and J. A. Radding. 1995. The AUR1 gene in Saccharomyces cerevisiae encodes dominant resistance to antifungal agent aureobasidin A (LY295337). Antimicrob. Agents Chemother. 39: 2765-2769.   DOI   ScienceOn
3 Ikai, K., K. Takesako, K. Shiomi, M. Moriguchi, Y. Umeda, J. Yamamoto, I. Kato, and H. Naganawa. 1991. Structure of aureobasidin A. J. Antibiot. 44: 925-933.   DOI
4 Ito, M., K. Murata, and A. Kimura. 1984. Transformation of intact yeast cells treated with alkali cations or thiol compounds. Agric. Biol. Chem. 48: 341-347.   DOI
5 Jesch, S. A., M. L. Gaspar, C. J. Stefan, M. A. Aregullin, and S. A. Henry. 2010. Interruption of inositol sphingolipid synthesis triggers Stt4p-dependent protein kinase C signaling. J. Biol. Chem. 285: 41947-41960.   DOI
6 Kim, T. and K. Kim. 1996. The construction of a stable starch-fermenting yeast strain using genetic engineering and rare-mating. Appli. Biochemistry and Biotechnology. 59: 39- 51.   DOI   ScienceOn
7 Cerbon, J., A. Falcon, A., C. Hernandez-Luna, and D. Segura- Cobos. 2005. Inositol phosphoceramide synthase is a regulator of intracellular levels of diacylglycerol and ceramide during the G1 to S transition in Saccharomyces cerevisiae. Biochem J. 15; 388: 169-176.
8 Cook, J. R., S. L. Emanuel, and S. Pestka. 1993. Yeast artificial chromosome fragmentation vectors that utilize URA3 selection. Genet. Anal. Tech. Appl. 10: 109-112.   DOI
9 Cowart, L. A. and L. M. Obeid. 2007. Yeast sphingolipids: recent developments in understanding biosynthesis, regulation, and function. Biochim Biophys Acta. 1771: 421-431.   DOI   ScienceOn
10 Dujon, B., D. Alexandraki, B. Andre, and W. Ansorge. 1994. Complete DNA sequence of yeast chromosome XI. Nature 369: 371-378.   DOI   ScienceOn
11 Endo, M., K. Takesako, I. Kato, and H. Yamaguchi. 1997. Fungicidal action of aureobasidin A, a cyclic depsipeptide antifungal antibiotic, against Saccharomyces cerevisiae. Antimicrob. Agents. Chemother. 41: 672-676.
12 Sherman, F., G. Fink, and J. B. Hicks. 1986. Methods in Yeast Genetics, Laboratory Course Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
13 Aeed, P. A., L. Y. Casey, M. M. Nagiec, and A. P. Elhammer. 2009. Inhibition of inositol phosphorylceramide synthase by the cyclic peptide aureobasidin. Antimicrob Agents Chemother. 53: 496-504.   DOI   ScienceOn
14 Cerantola, V., I. Guillas, C. Roubalty, C. Vionet, D. Uldry, J. Krundsen, and A. Conzelmann. 2009. Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inisitolphosphorylceramides. Molecular Microbiology 71: 1523-1537.   DOI   ScienceOn
15 Spencer, J. F. T., C. Bizeau, N. Reynolds, and D. M. Spencer. 1985. The use of mitochondrial mutant in hybridization of industrial yeast strains. Curr. Genet. 9: 649-652.   DOI   ScienceOn
16 Spencer, J. F. T. and D. M. Spencer. 1983. Genetic improvement of industrial yeasts. Ann. Rev. Microbiol. 37: 121-142.   DOI   ScienceOn
17 Takesako, K., H. Kuroda, T. Inoue, F. Haruna, Y. Yoshikawa, I. Kato, K. Uchida, T. Hiratani, and H. Yamaguchi. 1993. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot. 46: 1414-1427.   DOI   ScienceOn
18 Kreger-van Rij, N. J. W. 1984. The yeasts a taxonomic study, Third revised and enlarged edition, Elsevier Scince Publishers B. V.
19 Rose, M., P. Grisafi, and D. Botstein. 1984. Structure and function of the yeast URA3 gene : expression in Escherichia coli. Gene. 29: 113-124.   DOI
20 Saigal, D. 1993. Review article : Yeast strain development for ethanol production. Ind. J. Microbiol. 33: 159-168.