• Title/Summary/Keyword: yeast form

Search Result 179, Processing Time 0.025 seconds

Effect of Feeding Herb Extract on Growth Performance, Intestinal Microflora and Blood Component Profile in Broiler Chickens (한약재 추출물의 급여가 육계의 생산성, 장내 미생물 및 혈액 성상에 미치는 영향)

  • Park, S.B.;Na, J.C.;Yu, D.J.;Bang, H.T.;Hwang, I.H.;Ryu, K.S.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • This study was conducted to investigate the effects of feeding herb extract (HE) on productivity, intestinal microflora and blood component profile in broiler chickens. A total of three hundred twenty, 1-d-old male chicks (Ross) were divided into 4 treatments with 5 replicates, 16 birds per replicate. Dietary treatments consisted of four diets; the corn-soybean based control diet, the diet containing HE 0.1%, the diet containing HE 0.2%, and the diet containing HE 0.4%. The Control diet contained 3,100, 3,100, 3,200 kcal/kg ME and 22%, 20%, 18% CP for starter ($0{\sim}2 wk$), grower ($3{\sim}5 wk$), and finisher ($6{\sim}7 wk$) periods, respectively. There were no significant differences in feed intake and BW gain among treatments in starter period. In grower period, the BW gain of HE 0.2%, and HE 0.4% were significantly higher (p<0.05) compared to Control. The 7-wk BW gain of HE 0.2% was significantly higher than Control (p<0.05). The feed intake tended to increase in HE 0.1%, but no difference was detected in feed conversion ratio among treatments. No significant differences were found in blood total cholesterol, triglyceride, HDL-cholesterol, glucose, total protein, and albumin among treatments, but total cholesterol in HE 0.4% decreased significantly as compared with Control. The cfu of Lactobacillus spp., yeast, and E. coli in the guts of chickens fed HE were not different form each other, but tended to increase as compared with Control.

Studies on the Enzyme from Arthrobacter luteus Accelerating the Lysis of Yeast Cell Walls -II. Separation of the Factor Accelerating the Lysis of Yeast Cell Walls from the Preparation of Crude Zymolyase and Partial Purification of the Zymolyase with the Sephadex G-75 Gel- (Arthrobacter luteus가 생산(生産)하는 효모세포벽(酵母細胞壁) 용해촉진효소(溶解促進酵素)에 관(關)한 연구(硏究) -제 2 보(第2報) : Crude Zymolyase 표품중(標品中)으로부터 효모(酵母) 세포벽(細胞壁) 용해(溶解) 촉진(促進) 인자(因子)의 분리(分離) 및 Sephadex G-75 Gel에 의한 Zymolyase의 부분(部分) 정제(精製)-)

  • Oh, Hong-Rock;Shimoda, Tadahisa;Funatsu, Masaru
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.254-262
    • /
    • 1980
  • A series of experiment were carried out to separate the factor accelerating the lysis of cell wall of $Saccharomyces\;sak{\acute{e}}$ from the preparation of crude zymolyase obtained from Arthrobacter luteus. An attempt was also made to purify the enzyme which is essential for the study on the separation of the factor. The results are summarized as follows: 1. Crude zymolyase was fractionated 5 peaks $(A{\sim}E)$ containing three peaks $(A{\sim}C)$ passed through the column by the chromatography on Biogel CM-30. 2. Among the five peaks, peak E (protease fraction) was found to contain the factor accelerating the lytic activity of the zymolyase. 3. L-c fraction purified in almost free form from the nonlytic ${\beta}-1$, 3-glucanase, protease and inert protein by the affinity adsorption chromatography with Sephadex G-75 gel was obtained from zymolyase fraction (peak D). When it was subjected to polyacrylamide gel disc electrophoresis, only one clear protein band was observed at pH 4. 5, but still detected two or more band at pH 8. 3.

  • PDF

The Adjuvant Effect of Sophy ${\beta}$-Glucan to the Antibody Response in Poultry Immunized by the Avian Influenza A H5N1 and H5N2 Vaccines

  • Le, Thanh Hoa;Le, Tran Binh;Doan, Thanh Huong Thi;Quyen, Dong Van;Le, Kim XuyenThi;Pham, Viet Cuong;Nagataki, Mitsuru;Nomura, Haruka;Ikeue, Yasunori;Watanabe, Yoshiya;Agatsuma, Takeshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.405-411
    • /
    • 2011
  • Avian influenza virus vaccines produced in oil-emulsified inactivated form with antigen content of at least 160 hemagglutinin units (HAU) induced immunity in birds. However, in addition to enhancing the effect of the adjuvant(s), other additional supplemented biological compounds included in inactivated vaccines could produce higher levels of antibody. We examined in chickens, Vietnamese ducks, and muscovy ducks the adjuvant effect of Sophy ${\beta}$-glucan (SBG), a ${\beta}$-1,3-1,6 glucan produced by the black yeast Aureobasidium pollulans strain AF0-202, when administered with an avian influenza H5 subtype vaccine. In Experiment 1, 40 chickens (ISA Brown hybrid), allocated to four groups of ten each, were immunized with Oil-H5N1(VN), Oil-H5N1(CN), Oil-H5N2(CN), and saline (control group), respectively. In Experiment 2, chickens (ISA Brown hybrid), muscovy ducks (French hybrid), and Vietnamese ducks (indigenous Vietnamese) were used to further assess the effect of SBG on immunogenicity of the Oil-H5N1(VN) Vietnamese vaccine. ELISA and hemagglutination inhibition (HI) assays were used to assess the antibody response. The H5 subtype vaccines initiated significantly higher immune responses in the animals dosed with SBG, with 1.0-1.5 $log_2$ higher HI titers and 10-20% ELISA seroconversion, compared with those not dosed with ${\beta}$-glucan. Notably, some of the animals dosed with SBG induced HI titers higher than 9.0 $log_2$ following boosting immunization. Taken together, our serial studies indicated that SBG is a potential effector, such as enhancing the immune response to the H5 vaccines tested.

Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Bacillus thuringiensis Glucose 1-Dehydrogenase

  • Hyun, Jeongwoo;Abigail, Maria;Choo, Jin Woo;Ryu, Jin;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1708-1716
    • /
    • 2016
  • Glucose dehydrogenase (GDH) is an oxidoreductase enzyme and is used as a biocatalyst to regenerate NAD(P)H in reductase-mediated chiral synthesis reactions. In this study, the glucose 1-dehydrogenase B gene (gdhB) was cloned from Bacillus thuringiensis subsp. kurstaki, and wild-type (GDH-BTWT) and His-tagged (GDH-BTN-His, GDH-BTC-His) enzymes were produced in Escherichia coli BL21 (DE3). All enzymes were produced in the soluble forms from E. coli. GDH-BTWT and GDH-BTN-His showed high specific enzymatic activities of 6.6 U/mg and 5.5 U/mg, respectively, whereas GDH-BTC-His showed a very low specific enzymatic activity of 0.020 U/mg. These results suggest that the intact C-terminal carboxyl group is important for GDH-BT activity. GDH-BTWT was stable up to 65℃, whereas GDH-BTN-His and GDH-BTC-His were stable up to 45℃. Gel permeation chromatography showed that GDH-BTWT is a dimer, whereas GDH-BTN-His and GDH-BTC-His are monomeric. These results suggest that the intact N- and C-termini are required for GDH-BT to maintain thermostability and to form its dimer structure. The homology model of the GDH-BTWT single subunit was constructed based on the crystal structure of Bacillus megaterium GDH (PDB ID 3AY6), showing that GDH-BTWT has a Rossmann fold structure with its N- and C-termini located on the subunit surface, which suggests that His-tagging affected the native dimer structure. GDH-BTWT and GDH-BTN-His regenerated NADPH in a yeast reductase-mediated chiral synthesis reaction, suggesting that these enzymes can be used as catalysts in fine-chemical and pharmaceutical industries.

A Discrete Mathematical Model Applied to Genetic Regulation and Metabolic Networks

  • Asenjo, J.A.;Ramirez, P.;Rapaport, I.;Aracena, J.;Goles, E.;Andrews, B.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.496-510
    • /
    • 2007
  • This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-a-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an integrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 $(2^3)$ fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.

The Role of Trivalent Chromium as a Supplement (3가 크롬의 보조제로서의 역할)

  • 박형숙;강영희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.4
    • /
    • pp.762-768
    • /
    • 2004
  • Chromium has been known to be involved in the glucose metabolism, and hence the utilization of cellular glucose is impaired in the chromium deficiency. Chromium has been recognized as an essential nutrient since the finding of low-molecular-weight Cr-binding substance (LMWCr) as a biological modifier of insulin action. Clinical chromium deficiency associated with glucose intolerance that respond to the administration of chromium. The major impediment to the use of orally administered chromium is poor absorption of trivalent chromium in its inorganic form. Trivalent chromium is more available in yeast md, more recently, as chromium picolinate for oral absorption. The widespread use of these supplements has resulted in controversy regarding chromium's role as a nutrient, its use for treatment of insulin resistance, and its potential toxicity. Most recent evidence strongly supports tile conclusion that there is little fear of toxic reactions from chromium consumption. This report reviews the evidence for the potential toxicity of chromium supplements in contrast with its usefulness as a nutrient or therapeutic agent in the treatment or prevention of insulin resistance.

Antimicrobial Activity of the Solvent Extract from Different Parts of Orostachys japonicus (와송 부위별 추출물의 항균활성)

  • Yoon, So-Young;Lee, So-Young;Kim, Koth-Bong-Woo-Ri;Song, Eu-Jin;Kim, Seo-Jin;Lee, So-Jeong;Lee, Chung-Jo;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.1
    • /
    • pp.14-18
    • /
    • 2009
  • This study was to determine the inhibitory effect against food borne pathogens of ethanol and water extracts from leaf, stem and root of Orostachys japonicus. On the paper disc assay, no detectable bactericidal activity in the water extracts from leaf, stem and root of Orostachys japonicus and ethanol extracts form stem and root of Orostachys japonicus was shown. However, ethanol extract of Orostachys japonicus leaf showed the highest antimicrobial activity. Minimum inhibitory concentration (MIC) of ethanol extracts was determined to range from 0.05 to 0.1% in leaf of Orostachys japonicus against gram positive bacteria and yeast. Antimicrobial activity of ethanol extracts was stable by heating at $121^{\circ}C$ for 15 min, and not affected by pH $2{\sim}10$ except for B. subtilis. These findings suggest ethanol extract from leaf of Orostachys japonicus may be useful as natural preservative.

Expression of the Floral Repressor miRNA156 is Positively Regulated by the AGAMOUS-like Proteins AGL15 and AGL18

  • Serivichyaswat, Phanu;Ryu, Hak-Seung;Kim, Wanhui;Kim, Soonkap;Chung, Kyung Sook;Kim, Jae Joon;Ahn, Ji Hoon
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.259-266
    • /
    • 2015
  • The regulation of flowering time has crucial implications for plant fitness. MicroRNA156 (miR156) represses the floral transition in Arabidopsis thaliana, but the mechanisms regulating its transcription remain unclear. Here, we show that two AGAMOUS-like proteins, AGL15 and AGL18, act as positive regulators of the expression of MIR156. Small RNA northern blot analysis revealed a significant decrease in the levels of mature miR156 in agl15 agl18 double mutants, but not in the single mutants, suggesting that AGL15 and AGL18 co-regulate miR156 expression. Histochemical analysis further indicated that the double mutants showed a reduction in MIR156 promoter strength. The double mutants also showed reduced abundance of pri-miR156a and pri-miR156c, two of the primary transcripts from MIR156 genes. Electrophoretic mobility shift assays demonstrated that AGL15 directly associated with the CArG motifs in the MIR156a/c promoters. AGL18 did not show binding affinity to the CArG motifs, but pull-down and yeast two-hybrid assays showed that AGL18 forms a heterodimer with AGL15. GFP reporter assays and bimolecular fluorescence complementation (BiFC) showed that AGL15 and AGL18 co-localize in the nucleus and confirmed their in vivo interaction. Overexpression of miR156 did not affect the levels of AGL15 and AGL18 transcripts. Taking these data together, we present a model for the transcriptional regulation of MIR156. In this model, AGL15 and AGL18 may form a complex along with other proteins, and bind to the CArG motifs of the promoters of MIR156 to activate the MIR156 expression.

The Use of Fermented Soybean Meals during Early Phase Affects Subsequent Growth and Physiological Response in Broiler Chicks

  • Kim, S.K.;Kim, T.H.;Lee, S.K.;Chang, K.H.;Cho, S.J.;Lee, K.W.;An, B.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1287-1293
    • /
    • 2016
  • The objectives of this experiment was to evaluate the subsequent growth and organ weights, blood profiles and cecal microbiota of broiler chicks fed pre-starter diets containing fermented soybean meal products during early phase. A total of nine hundred 1-d-old chicks were randomly assigned into six groups with six replicates of 25 chicks each. The chicks were fed control pre-starter diet with dehulled soybean meal (SBM) or one of five experimental diets containing fermented SBM products (Bacillus fermented SBM [BF-SBM], yeast by product and Bacillus fermented SBM [YBF-SBM]; Lactobacillus fermented SBM 1 [LF-SBM 1]; Lactobacillus fermented SBM 2 [LF-SBM 2]) or soy protein concentrate (SPC) for 7 d after hatching, followed by 4 wk feeding of commercial diets without fermented SBMs or SPC. The fermented SBMs and SPC were substituted at the expense of dehulled SBM at 3% level on fresh weight basis. The body weight (BW) during the starter period was not affected by dietary treatments, but BW at 14 d onwards was significantly higher (p<0.05) in chicks that had been fed BF-SBM and YBF-SBM during the early phase compared with the control group. The feed intake during grower and finisher phases was not affected (p>0.05) by dietary treatments. During total rearing period, the daily weight gains in six groups were 52.0 (control), 57.7 (BF-SBM), 58.5 (YBF-SBM), 52.0 (LF-SBM 1), 56.7 (LF-SBM 2), and 53.3 g/d (SPC), respectively. The daily weight gain in chicks fed diet containing BF-SBM, YBF-SBM, and LF-SBM 2 were significantly higher values (p<0.001) than that of the control group. Chicks fed BF-SBM, YBF-SBM, and LF-SBM 2 had significantly lower (p<0.01) feed conversion ratio compared with the control group. There were no significant differences in the relative weight of various organs and blood profiles among groups. Cecal microbiota was altered by dietary treatments. At 35 d, chicks fed on the pre-starter diets containing BF-SBM and YBF-SBM had significantly increased (p<0.001) lactic acid bacteria, but lowered Coli-form bacteria in cecal contents compared with those fed the control diet. The number of Bacillus spp. was higher (p<0.001) in all groups except for LF-SBM 1 compared with control diet-fed chicks. At 7 d, jejunal villi were significantly lengthened (p<0.001) in chicks fed the fermented SBMs vs control diet. Collectively, the results indicate that feeding of fermented SBMs during early phase are beneficial to the subsequent growth performance in broiler chicks. BF-SBM and YBF-SBM showed superior overall growth performance as compared with unfermented SBM and SPC.

Molecular and Functional Characterization of Monocot-specific Pex5p Splicing Variants, Using OsPex5pL and OsPex5pS from Rice (Oryza sativa)

  • Lee, Jung Ro;Jung, Ji Hyun;Kang, Jae Sook;Kim, Jong Cheol;Jung, In Jung;Seok, Min Sook;Kim, Ji Hye;Kim, Woe Yeon;Kim, Min Gab;Kim, Jae-Yean;Lim, Chae Oh;Lee, Kyun Oh;Lee, Sang Yeol
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.161-169
    • /
    • 2007
  • We identified two alternatively spliced variants of the peroxisomal targeting signal 1 (PTS1) receptor protein Pex5ps in monocot (rice, wheat, and barley) but not in dicot (Arabidopsis and tobacco) plants. We characterized the molecular and functional differences between the rice (Oryza sativa) Pex5 splicing variants OsPex5pL and OsPex5pS. There is only a single-copy of OsPEX5 in the rice genome and RT-PCR analysis points to alternative splicing of the transcripts. Putative light-responsive cis-elements were identified in the 5' region flanking OsPEX5L and Northern blot analysis demonstrated that this region affected light-dependent expression of OsPEX5 transcription. Using the pex5-deficient yeast mutant Scpex5, we showed that OsPex5pL and OsPex5pS are able to restore translocation of a model PTS1 protein (GFP-SKL) into peroxisomes. OsPex5pL and OsPex5pS formed homo-complexes via specific interaction domains, and interacted with each other and OsPex14p to form hetero-complexes. Although overexpression of OsPex5pL in the Arabidopsis pex5 mutant (Atpex5) rescued the mutant phenotype, overexpression of OsPex5pS only resulted in partial recovery.