Browse > Article

Molecular and Functional Characterization of Monocot-specific Pex5p Splicing Variants, Using OsPex5pL and OsPex5pS from Rice (Oryza sativa)  

Lee, Jung Ro (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Jung, Ji Hyun (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Kang, Jae Sook (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Kim, Jong Cheol (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Jung, In Jung (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Seok, Min Sook (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Kim, Ji Hye (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Kim, Woe Yeon (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Kim, Min Gab (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Kim, Jae-Yean (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Lim, Chae Oh (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Lee, Kyun Oh (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Lee, Sang Yeol (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
Abstract
We identified two alternatively spliced variants of the peroxisomal targeting signal 1 (PTS1) receptor protein Pex5ps in monocot (rice, wheat, and barley) but not in dicot (Arabidopsis and tobacco) plants. We characterized the molecular and functional differences between the rice (Oryza sativa) Pex5 splicing variants OsPex5pL and OsPex5pS. There is only a single-copy of OsPEX5 in the rice genome and RT-PCR analysis points to alternative splicing of the transcripts. Putative light-responsive cis-elements were identified in the 5' region flanking OsPEX5L and Northern blot analysis demonstrated that this region affected light-dependent expression of OsPEX5 transcription. Using the pex5-deficient yeast mutant Scpex5, we showed that OsPex5pL and OsPex5pS are able to restore translocation of a model PTS1 protein (GFP-SKL) into peroxisomes. OsPex5pL and OsPex5pS formed homo-complexes via specific interaction domains, and interacted with each other and OsPex14p to form hetero-complexes. Although overexpression of OsPex5pL in the Arabidopsis pex5 mutant (Atpex5) rescued the mutant phenotype, overexpression of OsPex5pS only resulted in partial recovery.
Keywords
${\beta}$-Oxidation; Alternatively Spliced Variants; Dicot; Light-dependent Expression; Monocot; OsPex5pL; OsPex5pS; Peroxisomal Targeting Signal 1 (PTS1);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Baker, A., Charlton, W., Johnson, B., Lopez-Huertas, E., Oh, J., et al. (2000) Biochemical and molecular approaches to understanding protein import into peroxisomes. Biochem. Soc. Trans. 28, 499−504
2 Brocard, C., Lametschwandtner, G., Koudelka, R., and Hartig, A. (1997) Pex14p is a member of the protein linkage map of Pex5p. EMBO J. 16, 5491−5500
3 Lazarow, P. B. and Fujiki, Y. (1985) Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1, 489−530
4 Matsumura, T., Otera, H., and Fujiki, Y. (2000) Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel Pex5-impaired Chinese hamster ovary cell mutant. J. Biol. Chem. 275, 21715− 21721
5 Van der Leij, I., Franse, M. M., Elgersma, Y., Distel, B., and Tabak, H. F. (1993) PAS10 is a tetratricopeptide-repeat protein that is essential for the import of most matrix proteins into peroxisomes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 11782−11786
6 Schliebs, W., Saidowsky, J., Agianian, B., Dodt, G., Herberg, F. W., et al. (1999) Recombinant human peroxisomal targeting signal receptor PEX5. Structural basis for interaction of PEX5 with PEX14. J. Biol. Chem. 274, 5666−5673
7 Li, S. F. and Parish, R. W. (1995) Isolation of two novel myblike genes from Arabidopsis and studies on the DNA-binding properties of their products. Plant J. 8, 963−972
8 Fransen, M., Brees, C., Baumgart, E., Vanhooren, J. C., Baes, M., et al. (1995) Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J. Biol. Chem. 270, 7731−7736
9 James, P., Halladay, J., and Craig, E. A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425−1436
10 Jang, H. H., Lee, K. O., Chi, Y. H., Jung, B. G., Park, S. K., et al. (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117, 625−635
11 Lee, J. R., Lee, K. O., Park, J. H., Yoo, J. Y., Kang, J. S., et al. (2004) Molecular and functional characterization of a PEX14 cDNA from rice. Plant Sci. 166, 123−130
12 Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297−300
13 Braverman, N., Dodt, G., Gould, S. J., and Valle, D. (1998) An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum. Mol. Genet. 7, 1195−1205
14 Rehling, P., Marzioch, M., Niesen, F., Wittke, E., Veenhuis, M., et al. (1996) The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene. EMBO J. 15, 2901−2913
15 Song, J. T. (2006) Induction of a salicylic acid glucosyltransferase, AtSGT1, is an early disease response in Arabidopsis thaliana. Mol. Cells 22, 233−238
16 Knott, T. G., Birdsey, G. M., Sinclair, K. E., Gallagher, I. M., Purdue, P. E., et al. (2000) The peroxisomal targeting sequence type 1 receptor, Pex5p, and the peroxisomal import efficiency of alanine:glyoxylate aminotransferase. Biochem. J. 352 Pt 2, 409−418
17 Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355−360
18 Dammai, V. and Subramani, S. (2001) The human peroxisomal targeting signal receptor, Pex5p, is translocated into the peroxisomal matrix and recycled to the cytosol. Cell 105, 187−196
19 Otera, H., Harano, T., Honsho, M., Ghaedi, K., Mukai, S., et al. (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p.PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J. Biol. Chem. 275, 21703−21714
20 Kragler, F., Lametschwandtner, G., Christmann, J., Hartig, A., and Harada, J. J. (1998) Identification and analysis of the plant peroxisomal targeting signal 1 receptor NtPEX5. Proc. Natl. Acad. Sci. USA 95, 13336−13341
21 Osumi, T., Tsukamoto, T., Hata, S., Yokota, S., Miura, S., et al. (1991) Amino-terminal presequence of the precursor of peroxisomal 3-ketoacyl-CoA thiolase is a cleavable signal peptide for peroxisomal targeting. Biochem. Biophys. Res. Commun. 181, 947−954
22 Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., et al. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653−657
23 Bottger, G., Barnett, P., Klein, A. T., Kragt, A., Tabak, H. F., et al. (2000) Saccharomyces cerevisiae PTS1 receptor Pex5p interacts with the SH3 domain of the peroxisomal membrane protein Pex13p in an unconventional, non-PXXP-related manner. Mol. Biol. Cell 11, 3963−3976
24 Gai, X. X., Lipson, K. E., and Prystowsky, M. B. (1992) Unusual DNA binding characteristics of an in vitro translation product of the CCAAT binding protein mYB-1. Nucleic Acids Res. 20, 601−606
25 Lee, J. R., Jang, H. H., Park, J. H., Jung, J. H., Lee, S. S., et al. (2006) Cloning of two splice variants of the rice PTS1 receptor, OsPex5pL and OsPex5pS, and their functional characterization using pex5-deficient yeast and Arabidopsis. Plant J. 47, 457−466
26 Rombauts, S., Dehais, P., Van Montagu, M., and Rouze, P. (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. 27, 295−296
27 Otera, H., Setoguchi, K., Hamasaki, M., Kumashiro, T., Shimizu, N., et al. (2002) Peroxisomal targeting signal receptor Pex5p interacts with cargoes and import machinery components in a spatiotemporally differentiated manner: conserved Pex5p WXXXF/Y motifs are critical for matrix protein import. Mol. Cell. Biol. 22, 1639−1655
28 Collins, C. S., Kalish, J. E., Morrell, J. C., McCaffery, J. M., and Gould, S. J. (2000) The peroxisome biogenesis factors pex4p, pex22p, pex1p, and pex6p act in the terminal steps of peroxisomal matrix protein import. Mol. Cell. Biol. 20, 7516− 7526
29 Dodt, G., Braverman, N., Wong, C., Moser, A., Moser, H. W., et al. (1995) Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat. Genet. 9, 115−125
30 Hayashi, M., Toriyama, K., Kondo, M., and Nishimura, M. (1998) 2,4-Dichlorophenoxybutyric acid-resistant mutants of Arabidopsis have defects in glyoxysomal fatty acid betaoxidation. Plant Cell 10, 183−195
31 Osumi, T., Tsukamoto, T., and Hata, S. (1992) Signal peptide for peroxisomal targeting: replacement of an essential histidine residue by certain amino acids converts the amino-terminal presequence of peroxisomal 3-ketoacyl-CoA thiolase to a mitochondrial signal peptide. Biochem. Biophys. Res. Commun. 186, 811−818