• Title/Summary/Keyword: yeast culture

Search Result 1,051, Processing Time 0.038 seconds

Fermentation Process for Mass Production of Clitocybin A, a New Anti-Wrinkle Agent from Clitocybe aurantiaca and Evaluation of Inhibitory Activity on Matrix Metalloproteinase-1 Expression (Clitocybe aurantiaca 균주가 생산하는 주름개선소재 clitocybin A의 대량 발효생산 및 MMP-1 발현저해활성)

  • Kim, Kwan-Chul;Lee, Hyeok-Won;Lee, Hong-Won;Choo, Soo-Jin;Yoo, Ick-Dong;Ha, Byung-Jo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.194-201
    • /
    • 2014
  • Clitocybin A is a novel anti-wrinkle cosmetic agent produced by the strain from a Korean native mushroom Clitocybe aurantiaca. In this study, fermentation, extraction, and purification conditions for a large scale production of clitocybin A were optimized, and its cytotoxicity and inhibition activity on the expression of matrix metalloproteinase-1 (MMP-1) were characterized. The mass production of anti-wrinkle agent was achieved according to the 300 L fermentation process with a fed-batch cultivation using the modified yeast-maltose (YM) broth, and a total of 12.5 kg of cell mass was obtained in a 120 L culture broth for 14 days. After extraction and purification, clitocybin A was identified by HPLC. The cytotoxicity of clitocybin A was examined by the MTT assay. When assayed at 100 and 200 ${\mu}g/ml$ concentrations, clitocybin A showed no cytotoxicity, demonstrating safety. The inhibition activity of clitocybin A on the expression of MMP-1 was examined against UV irradiation. Oleanolic acid (control group) showed a relatively low MMP-1 inhibiting activity (ca. 16.7%) at 10 ${\mu}g/ml$ and showed increased cytotoxicity at higher concentrations. In contrast, clitocybin A showed no cytotoxicity at 100 ${\mu}g/ml$, and exhibited a relatively high MMP-1-inhibiting activity (33.1%). These findings indicate that clitocybin A may be a safe and effective anti-wrinkle agent for use in functional cosmetics.

Optimization of Fermentation Conditions for the Manufacture of Wild Grape Wine (산머루주 제조를 위한 발효조건의 최적화)

  • Kim, Seong-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.24-37
    • /
    • 2008
  • Yeast with excellent ferment ability was isolated and selected from wild grape to manufacture wild grape wine. Wild grape wine by SMR-3 isolated from wild grape was better than other strains in quality, such as high alcohol content and low acidity, residual sugar, organic acid and fusel oil content. Fermentation condition was optimized to manufacture wild grape wine with response surface methodology using isolated SMR-3 as an alcohol fermentation strain. As a result of culture conditions, 10.61% of alcohol content was expected under the conditions of $21.91^{\circ}C$ fermenting temperature, $21.48^{\circ}brix$ of initial sugar content, and 14.65 day of fermentation time. Residual sugar content showed the lowest value at $24.48^{\circ}C$ fermentation temperature, $12.78^{\circ}brix$ of initial sugar content, and 9.02 day fermentation time. The highest level of sensory evaluation was found at $20.23^{\circ}C$ fermentation temperature, $25.30^{\circ}brix$ of initial sugar content, and 5.94 day fermentation time. Ethyl alcohol was the main alcohol component in wild grape wine and fusel oil in wild grape wine was hardly detected; thus, the quality of wild grape wine was considered excellent. The optimal fermentation conditions of wild grape wine was superimposed by deriving a regression equation for alcohol content, fusel oil, ethyl alcohol content, and overall palatability for each variable of wild grape wine. Hence, the optimal fermentation conditions are estimated to be: fermentation temperature $24{\sim}28^{\circ}C$, initial sugar content $20{\sim}24^{\circ}brix$, and fermenting time $12{\sim}14$ days.

Selection of Carbon, Nitrogen Source and Carrier for Mass Production of Beauveria bassiana (Beauveria bassiana 대량배양을 위한 탄소원, 질소원 및 고체 기질 선발)

  • Kim, Jeong Jun;Han, Ji Hee;Lee, Sangyeob
    • The Korean Journal of Mycology
    • /
    • v.42 no.4
    • /
    • pp.328-332
    • /
    • 2014
  • For mass production of entomopathogenic fungus Beauveria bassiana 149, isolated from moth larva, by two-phase fermentation, we performed selection of carbon and nitrogen sources for liquid culture and examined solid fermentation on carrier, ingredient, temperature, and water content. Spore production with rice powder, corn powder, and starch from sweet potato was higher than that of sucrose and dissolvable starch for liquid fermentation as first-phase fermentation. As a nitrogen source, addition of peptone and yeast powder showed higher spore production than $NaNO_3$, fish powder, and soybean powder. The isolate produced more conidia in sawdust + wheat bran + corn powder, sawdust + wheat bran and rice shell + wheat bran as carrier and ingredient than vermiculite as carrier. Conidia production of B. bassiana 149 in solid-phase fermentation was twice higher at 30 than 20. Conidia yield was higher at 60% and 70% water content ($26.9{\times}10^8$ and $38.6{\times}10^8conidia/g$) than 40% and 50% ($13.9{times}10^8 $and $11.6{\times}10^8conidia/g$), respectively.

Characterization of Anionic Peroxidase Induced by Low Host-Specific Elicitor in Suspension Cultures of Rose (Rosa sp.) (장미(Rosa sp.) 현탁배양세포에서 숙주 특이성이 낮은 Elicitor에 의해 유도되는 Anionic Peroxidase의 특성)

  • 신미선;양은진;이인철
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.277-282
    • /
    • 1998
  • Whereas cationic extracellular peroxidases (PODs) were observed in the suspension cultures of rose (Rosa sp. L. cv Pual's scarlet) grown under normal conditions, new anionic isozymes were induced within 24 hr by the treatment of low host-specific elicitor (10 mg glucan/L media) prepared from yeast cell wall. Prominent anionic (pI 6.1) and cationic POD (pI 8.4) were purified and characterized to understand the physiological role of the enzymes. Both enzymes were purified (ca.200 fold) by the ammonium sulfate precipitation, ion exchange chromate-graphy and gel filtration chromatography. The Km values of the purified anionic POD for ferulic acid and $\textrm{H}_2\textrm{O}_2$ were 4.64 mM and 0.72 mM, whereas those of the cationic POD were 1.38 mM and 0.48 mM, respetively. The activity of the anionic POD as NADH oxidase was twice higher than that of cationic POD. The NADH oxidation in the anionic POD fraction was inhibited by 60% on the addition of 0.1 mM coniferyl alcohol, while that in the cationic fraction was inhibited by 15%.

  • PDF

Optimization of an Industrial Medium and Culture Conditions for Probiotic Weissella cibaria JW15 Biomass Using the Plackett-Burman Design and Response Surface Methodology

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Kim, Won-Ju;Lee, Do-Un;Kim, Jong-Ha;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.630-637
    • /
    • 2022
  • The objective of this study was to optimize industrial-grade media for improving the biomass production of Weissella cibaria JW15 (JW15) using a statistical approach. Eleven variables comprising three carbon sources (glucose, fructose, and sucrose), three nitrogen sources (protease peptone, yeast extract, and soy peptone), and five mineral sources (K2HPO4, potassium citrate, ⳑ-cysteine phosphate, MgSO4, and MnSO4) were screened by using the Plackett-Burman design. Consequently, glucose, sucrose, and soy peptone were used as significant variables in response surface methodology (RSM). The composition of the optimal medium (OM) was 22.35 g/l glucose, 15.57 g/l sucrose, and 10.05 g/l soy peptone, 2.0 g/l K2HPO4, 5.0 g/l sodium acetate, 0.1 g/l MgSO4·7H2O, 0.05 g/l MnSO4·H2O, and 1.0 g/l Tween 80. The OM significantly improved the biomass production of JW15 over an established commercial medium (MRS). After fermenting OM, the dry cell weight of JW15 was 4.89 g/l, which was comparable to the predicted value (4.77 g/l), and 1.67 times higher than that of the MRS medium (3.02 g/l). Correspondingly, JW15 showed a rapid and increased production of lactic and acetic acid in the OM. To perform a scale-up validation, batch fermentation was executed in a 5-l bioreactor at 37℃ with or without a pH control at 6.0 ± 0.1. The biomass production of JW15 significantly improved (1.98 times higher) under the pH control, and the cost of OM was reduced by two-thirds compared to that in the MRS medium. In conclusion, OM may be utilized for mass producing JW15 for industrial use.

Medium optimization for growth of Bacillus amyloliquefaciens ISP-5 strain and evaluation of plant growth promotion using lettuce (Bacillus amyloliquefaciens ISP-5 균주의 배지 최적화 및 상추를 이용한 식물 생장 촉진 평가)

  • Kang-Hyun Choi;Sun Il Seo;Haeseong Park;Ji-hwan Lim;Pyoung Il Kim
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.356-361
    • /
    • 2022
  • Bacillus sp. is a useful strain for agriculture because it promotes plant growth and controls plant pathogens through a variety of mechanisms. In this study, we obtained a microbial preparation with a high number of viable cells by culturing newly isolated soil bacteria on an optimized medium. Subsequently, we applied this preparation to lettuce to enhance its growth and yield. First, B. amyloliquefaciens ISP-5 was isolated from soil. Next, optimization of culture medium was carried out using 5 L scale fermenters. When culturing B. amyloliquefaciens ISP-5 on this optimized medium, the number of viable cells was approximately 1000 times higher than that obtained from culturing on the commercial medium. Afterwards, the plant growth promotion properties of the ISP-5 strain were evaluated using lettuce as a test plant. Foliar spray treatment of lettuce was carried out by inoculating half the standard concentration suspension (0.5 × 107 cfu/ml). As a result, leaf width increased by 8.6% and leaf length increased by 12.9% compared to the control group. Live weight also increased by 24.2% and dry weight by 23.9%. Considering the results from field test, B. amyloliquefaciens ISP-5 showed potential as a plant growth-promoting bacteria.

Diversity, Saccharification Capacity, and Toxigenicity Analyses of Fungal Isolates in Nuruk (누룩곰팡이 분리균의 다양성 및 당화능 분석과 독소생산능 조사)

  • Kim, Min Sik;Kim, Sinil;Ha, Byeong-Seok;Park, Hye-Young;BaeK, Seong-Yeol;Yeo, Soo-Hwan;Ro, Hyeon-Su
    • The Korean Journal of Mycology
    • /
    • v.42 no.3
    • /
    • pp.191-200
    • /
    • 2014
  • Nuruk samples collected from various regions in Korea were investigated in terms of fungal contents and diversity. In measurement of colony forming unit (CFU) in Nuruk suspensions on DRBC agar, Nuruk samples MS4, MS8, and MS10 were among the highest fungal density, with $1,278.9{\pm}21.6$ (${\times}10^4$), $1,868.0{\pm}27.7$ (${\times}10^4$), and $775.1{\pm}19.2$ (${\times}10^4$) were among the samples showing the highest fungal density. CFU per 20 mg Nuruk, respectively. The majority of fungal components were yeasts, including Pichia anomala, P. kudriavzevii, Kluyveromyces marxianus, and Saccharomycopsis fibuligera, whereas Aspergillus oryzae and Rhizopus oryzae, the representative Nuruk fungi, were predominant only in the low fungal density Nuruks (MS2, MS5, and MS11). Saccharification capability of the fungal isolates was assessed by measurement of amylase activity in the culture broth. The highest amylase activity was found in A. niger and A. luchuensis, followed by S. fibuligera. A. oryzae and R. oryzae showed fair amylase activity but significantly lower than those of the three fungal species. R. oryzae was suggested to play an additional role in degradation of ${\beta}$-glucan in crop component of Nuruk since R. oryzae was the only fungus that showed ${\beta}$-glucanase activity among the fungal isolates. To confirm the safety of Nuruk, aflatoxigenicity of the isolated Aspergillus was estimated using the DNA markers norB-cypA, aflR, and omtA. All of the isolates turned out to be non-aflatoxigenic as evidenced by the deletion of gene markers, norB-cypA and aflR, and the absence of aflatoxin in the culture supernatants shown by TLC analysis.

Oxygen Toxicity of Superoxide Dismutase-Deficient Saccharomyces cerevisiae by Paraquat (Paraquat에 의해 유도된 Superoxide Dismutase 결핍 효모의 산소 독성)

  • 김지면;남두현용철순허근
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.561-567
    • /
    • 1995
  • Using superoxide dismutase (SOD)-deficient mutants of Saccharomyces cerevisiae, the oxygen toxicity induced by paraquat was studied. In aerobic culture condition, yeasts lacking MnSOD (milochondrial SOD) showed more significant growth retardation than CuZnSOD (cytoplasmic SOD)-deficient yeasts. However, not so big differences in growth pattern of those mutants compared with wild type were observed under anaerobic condition. When exposed to paraquat, the growth of yeasts lacking CuZnSOD was severely affected by higher than 0.01mM of paraquat in culture medium. By the analysis of several cellular components ivolved in free radical generating and scavenging system, it was found that, under aerobic condition, the content of lipid peroxides in cell membrane as well as cellular activity of glutathion peroxidase of CuZnSOD-deficient mutants was increased in the presence of paraquat, although significant decrease of catalase activity was observed in those stratns. In MnSOD-deficient yeast, however, increment in cellular activity of glutathion peroxldase and catalase by paraquat was observed without any deterioration of membrane lipid. It implies that the lack of mitochondrial SOD could be compensated by both of glutathion peroxldase and catalase, but that only glutathion peroxidase might act for CuZnSOD in cytoplasm. In contrast, all of SOD-deficient mutants showed a significant decrease in catalase activity, but slight increase in the activities of glutathion peroxidase, when cultivated anaerobically in the medium containing paraquat. Nevertheless, any significant changes of lipid peroxides in cell membranes were not observed during anaerobic cultivation of SOD-deficient mutants. It suggests that a little amount of free radicals generated by paraquat under anaerobic condition could be sufficiently overcome by glutathion peroxidase but not by catalase.

  • PDF

Biosynthesis of Silver Nanoparticles Using Microorganism (미생물을 이용한 은 나노입자 생합성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1354-1360
    • /
    • 2018
  • The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.

Quality Properties of Chonggak Kimchi Fermented at different Combination of Temperature and Time (발효 온도와 시간 조합을 달리한 총각김치의 품질 특성)

  • Kang, Jeong-Hwa;Kang, Sun-Hee;Ahn, Eun-Sook;Chung, Hee-Jong
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.6
    • /
    • pp.551-561
    • /
    • 2003
  • To determine the conditions of the fermentation and storage for Chonggak kimchi in kimchi refrigerator, prepared Chonggak kimchi took into kimchi refrigerators which were controlled at four different modes of the fermented temperature and time, and fermented and kept for 16 weeks. The pH in Chonggak kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ dropped greater than all of kimchi fermented at other combinations, and the changes of pH at any combinations were not greater than those in Baechu kimchi, because pH in Chonggak kimchi did not dropped below 4.5. Acidities in Chonggak kimchi were greatly increased at higher temperature. The acidity in Chonggak kimchi during the first week of fermentation was lower than that in Baechu kimchi and then it was rather higher because of the addition of waxy rice paste. In texture, puncture force of Chonggak kimchi was decreased slowly until 8 weeks of fermentation and then did not changed much and the highest values showed in Chonggak kimchi stored directly at $-1^{\circ}C$ without any fermentation. In sensory evaluation, the scores for the carbonated flavor and the sourness were the highest in Chonggak kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$, but the lowest in Chonggak kimchi stored directly at $-1^{\circ}C$ without any fermentation because of some undesirable flavors. The lowest hardness showed in Chonggak kimchi fermented at highest temperature and the best hardness was in Chonggak kimchi fermented at $5^{\circ}C$ for 3 days or 6 days/stored at $-1^{\circ}C$. The appearance was the best in Chonggak kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ and the worst was in Chonggak kimchi stored directly at $-1^{\circ}C$ without any fermentation. The overall acceptability of Chonggak kimchi fermented at $20^{\circ}C$ for 24 hours/stored at $-1^{\circ}C$ was good after 4 weeks of fermentation, but in Chonggak kimchi fermented at $5^{\circ}C$ for 3 days or 6 days/stored at $-1^{\circ}C$ it was good after 6 weeks. Total microbial counts in most of Chonggak kimchi were reached to a maximum number within 7 days, and then decreased similarly at all modes. Leuconostoc spp. and Lactobacillus spp. increased to maximum number of $1.48{\times}10^9\;and\;5.62{\times}10^9$, respectively, in Chonggak kimchi fermented for 7 days. Yeast counts showed a increasing trend not depends on fermenting temperature and they were lower counts than those in Baechu kimchi. Waxy rice paste which added to Chonggak kimchi resulted in increasement of glucose as a carbon source and stimulated to reproduce the microbes in Chonggak kimchi.