• Title/Summary/Keyword: yaw system

Search Result 404, Processing Time 0.024 seconds

Experimental Study of Small Vertical Axis Wind Turbine according to Type of Blades (블레이드 형태에 따른 소형 수직축 풍력발전기의 실험적 연구)

  • Lee, Min-Gu;Oh, Hun;Park, Wal-Seo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.88-92
    • /
    • 2017
  • Owing to the depletion of fossil energy, wind power is attracting attention as a promising environmentally friendly alternative energy source, because it is abundant, renewable, and non-polluting. Wind turbines are divided into horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) according to the direction of the rotating shaft. VAWTs have a low power generation efficiency, but are not affected by the wind direction and, thus, no yaw system is required and their structure is simple. Small VAWTs are attracting much attention because they can generate power even at low wind speeds. In this study, the output voltages and output currents of small VAWTs with gyromill type, hinge type and double door type blades capable of generating power even at low wind speeds were analyzed at variable wind speeds in the range of 1~11 m/s. At the maximum wind speed of 11m/s, the application of the double door type blades achieved 67% and 9% higher wind turbine output voltages than that of the gyromill type and hinge type blades, respectively. As regards the wind turbine output currents, the application of the double door type blades gave rise to 93% and 5% higher results than that of the gyromill type and hinge type blades, respectively. Through this study, the excellent output characteristics and commercialization potential of the double door type blades, which can generate power both at low and high wind speeds, were confirmed.

ACQUISITION OF THE FLIGHT INFORMATION USING THE KSR-3 MAGNETOMETER (KSR-3 탑재 자력계를 이용한 비행정보 획득 연구)

  • Kim, Sun-Mi;Jang, Min-Hwan;Lee, Dong-Hun;Han, Young-Seok;Kim, Jun;Hwang, Seung-Hyun;Lee, Eun-Seok;Lee, Sun-Min;Kim, Hyo-Jin;Lee, Su-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.29-42
    • /
    • 2003
  • The KSR-3 magnetometers consist of the fluxgate magnetometer (MAG/AIM) for acquiring the rocket flight attitude information, and the search-coil magnetometer (MAG/SIM) for the observation of the Earth's magnetic fluctuations. The position (latitude, longitude, and height) and flight condition (the transformation angle) of the rocket is measured after the data based on these two magnetometers are compared with IGRF The gap in the vector of magnetic field between the position of the launching point and an impact point is taken into account in data reduction. Angular variation of pitch, yaw, and roll can be researched when the data is applied to the coordinate system of the rocket.

Vimentin Is Involved in Peptidylarginine Deiminase 2-Induced Apoptosis of Activated Jurkat Cells

  • Hsu, Pei-Chen;Liao, Ya-Fan;Lin, Chin-Li;Lin, Wen-Hao;Liu, Guang-Yaw;Hung, Hui-Chih
    • Molecules and Cells
    • /
    • v.37 no.5
    • /
    • pp.426-434
    • /
    • 2014
  • Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a $Ca^{2+}$-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in1a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.