• Title/Summary/Keyword: yaw system

Search Result 404, Processing Time 0.028 seconds

Roll/yaw controller design using double gimbaled momentum wheel (더블김벌 모멘텀휠을 이용한 롤/요 제어기 설계)

  • 박영웅;방효충
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1099-1102
    • /
    • 1996
  • In this paper, roll/yaw attitude control of spacecraft using a double gimbaled wheel is discussed with two feedback controllers designed. One is a PD controller with no phase difference between roll and yaw control input. The other is a PD controller with a phase lag compensator about the yaw control input. The phase lag compensator is designed as a first order system and a lag parameter is designed for the yaw angle control. There are two case simulations for each controller ; constant disturbance torques and initial errors of nutation at motion. We obtain the results through simulations that steady-state error and rising time of yaw angle are determined by the compensator. Simulation parameters used in this study are the values of KOREASAT F1.

  • PDF

Lateral Control of Autonomous Vehicle by Yaw Rate Feedback

  • Yoo, Wan-Suk;Park, Ju-Yong;Hong, Seong-Jae;Park, Kyoung-Taik;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.338-343
    • /
    • 2002
  • In the autonomous vehicle, the reference lane is continually detected by machine vision system. And then the vehicle is steered to follow the reference yaw rates which are generated by the deviations of lateral distance and the yaw angle between a vehicle and the reference lane. To cope with the steering delay and the side-slip of vehicle, PI controller is introduced by yaw rate feedback and tuned from the simulation where the vehicle is modeled as 2 DOF and 79 DOF and verified by the results of an actual vehicle test. The lateral control algorithm by yaw rate feedback has good performances of lane tracking and passenger comfort.

Control for a Yaw Error Compensation System of Linear Motor Stage (리니어모터 스테이지 편요오차 보상장치 제어)

  • Lee, Seung-Hyun;Kang, Min-Sig
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.997-1005
    • /
    • 2008
  • Linear motor stage is a useful device in precision engineering field because of its simple power transmission mechanism and accurate positioning. Even though linear motor stage shows fine positioning accuracy along travel axis, geometric dependent errors which relay on machining and assembling accuracy should be addressed to increase total positioning performances. In this paper, we suggests a cost effective yaw error compensation servo-system which is mounted on platform of the stage and nullify travel position dependent yaw error. This paper also provides a method of designing a sliding mode control which is robust to existing friction disturbance and model uncertainties. The reachability condition of slinding mode control for the yaw error compensating servo-system has been established. From some experimental results by using an experimental set-up, the sliding mode control showed its effective in disturbance rejection and its performance was superior to conventional linear controls.

A Study on Integrated Control System Design of Active Rear Wheel Steering and Yaw-Moment Control Systems (능동 후륜조타와 요우 모멘트의 협조제어에 관한 연구)

  • Park, J.H.;Pak, J.W.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • Conventionally, 2WS is used for vehicle steering, which can only steering front wheel. In case of trying to high speed lane change or cornering through this kind of vehicle equipped 2WS, it may occur much of Yaw moment. On the other hand, 4WS makes decreasing of Yawing Moment, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

  • PDF

A Study on the Full Active 4WS Control Method Using Nonlinear Tire Model (비선형 타이어모델을 이용한 완전능동형 4WS 제어방법에 관한 연구)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.76-85
    • /
    • 1997
  • The understeer characteristics of four wheel steering system(4WS system) in a high speed region have a negative effect upon the yaw velocity, leading to a decrease in the handling ability of vehicle. As a result, even if the side slip angle of vehicle can be kept up a minimum, a driver must compensate a decrease in yaw velocity by increasing the steering wheel angle in order to track the desired vehicle path. In this study, to keep the side slip angle of vehicle at zero and achieve a suitable yaw velocity in vehicle motion, a full active 4WS system(FA 4WS system) with actively steerable front and rear wheels is presented based on a nonlinear vehicle model and a model following control of yaw velocity. And the analysis results show the fat that, besides the excellent stability of vehicle, the FA 4WS system is able to realize better handling performance of vehicle than the previous 4WS systems in the high speed region.

  • PDF

A Simulator Study on Yaw-checking and Coursekeeping Ability in IMO's Ship Manoeuvrability Standards

  • Sohn, Kyoung-Ho;Yang, Seung-Yeul;Lee, Dong-Sub
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.3
    • /
    • pp.26-36
    • /
    • 2002
  • Yaw-checking and course-keeping ability in IMO's ship rnanoeuvrability standards is reviewed from the viewpoint of safe navigation. Three kinds of virtual series-ships, which have different course instability, are taken as test models. The numerical simulation on Z-test is carried out in order to examine the correlation between known manoeuvrability in spiral characteristics and various kinds of overshoot angle. Then simulator experiments are executed with series-ships in a curved, narrow waterway by five pilots in order to examine the correlation between known manoeuvrability and degree of manoeuvring difficulty. IMO criteria for yaw-checking and course-keeping ability are discussed and new criteria are proposed.

Design for Yaw Brake System in Wind Turbine (풍력발전기 요 브레이크 시스템의 설계)

  • Park, Jin-Hwan;Park, Sang-Shin;Yoon, Yong-Ik;Yoo, Chang-Hee;Hwang, Jung-Gyu
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.204-208
    • /
    • 2011
  • Yaw brakes are used in wind turbines to control the orientation of blades to be perpendicular to the wind. These devices are very important machine elements because they are closely related to the overall efficiency of wind turbines. One unit of yaw brakes is composed of a friction pad and a caliper. In this study, a tangential force between the friction pad and the disk is calculated when the brake is acting in 750 kW wind turbine. Then, stress distribution and the deformation of the caliper are calculated using a finite element analysis. An experimental equipment is also developed to verify the exactness of calculated results. The analytical and experimental results are presented and discussed.

A Study on Yaw Control of Multi-Fan Hovering with SRFIMF (SRFIMF를 이용한 멀티팬 부상기의 YAW제어에 관한 연구)

  • 박선국;최부귀
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.4
    • /
    • pp.361-370
    • /
    • 1992
  • A controller of the hovering VTOL aircraft with four fan is constructed by SRFIMF(State Rate Feedback Implicit Model-Following)theory, in which feedback state are angle acceleration, angle velocity and angle position of the aircraft during hover With yaw control of the system, characteristics of the hovering aircraft can be analyzed by changing states feedback gain and sponse provides robust stable hovering system.

  • PDF

Study on the Vibration Characteristics of Yaw Gear System for Large-Capacity Offshore Wind Turbine

  • HyoungWoo Lee;SeoWon Jang;Seok-Hwan Ahn
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.164-171
    • /
    • 2023
  • Vibration and noise must be considered to maximize the efficiency of a yaw system and reduce the fatigue load acting on a wind turbine. This study investigated a method for analyzing yaw-system vibration based on the change in the load-duration distribution (LDD). A substructure synthesis method was combined with a planetary gear train rotational vibration model and finite element models of the housing and carriers. For the vibration excitation sources, the mass imbalance, gear mesh frequency, and bearing defect frequency were considered, and a critical speed analysis was performed. The analysis results showed that the critical speed did not occur within the operating speed range, but a defect occurred in the bearing of the first-stage planetary gear system. It was found that the bearing stiffness and first natural frequency increased with the LDD load. In addition, no vibration occurred in the operating speed range under any of the LDD loads. Because the rolling bearing stiffness changed with the LDD, it was necessary to consider the LDD when analyzing the wind turbine vibration.

Decoupling Control of 2WS Cars Using Direct Yaw Moment (직접요오모멘트를 이용한 이륜조향차량의 비결합 제어기 설계)

  • Choi, Jae-Weon;Cho, Chung-Nae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.761-767
    • /
    • 2005
  • There exists a structural limit of 2WS cars that drivers would not like simultaneously to follow the desired path and attenuate moments resulting from disturbances because lateral acceleration and yaw rate are coupled inherently. In order to overcome the limit, the 4WS cars that have rear wheel steering as an additional input have been introduced. But the 4WS cars have disadvantages that much cost is required due to structural alteration, it is difficult to be used to the driving circumstances and tire performances are not efficient in nonlinear or large lateral acceleration ranges. Therefore, it is proposed that, in this paper, a robust controller is easy to apply to 2WS cars by using direct yaw moment, decouples lateral acceleration from yaw motion and is robust against disturbances and uncertainties of system parameters, and thus the proposed control method has the advantages of 4WS cars which can be achieved in 2WS cars.