• 제목/요약/키워드: yaw system

검색결과 405건 처리시간 0.029초

스캐닝 방식 XY 스테이지의 운동오차 분석 (The Analysis of Motion Error in Scanning Type XY Stage)

  • 황주호;박천홍;이찬홍;김동익;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1380-1383
    • /
    • 2004
  • The scanning type XY stage is frequently used these days as precision positioning system in equipment for semiconductor or display element. It is requested higher velocity and more precise accuracy for higher productivity and measuring performance. The position accuracy of general stage is primarily affected by the geometric errors caused by parasitic motion of stage, misalignments such as perpendicular error, and thermal expansion of structure. In the case of scanning type stage, H type frame is usually used as base stage which is driven by two actuators such as linear motor. In the point view of scanning process, the stage is used in moving motion. Therefore, dynamic variation is added as significant position error source with other parasitic motion error. Because the scanning axis is driven by two actuators with two position detectors, 2 dimensional position errors have different characteristic compared to general tacked type XY stage. In this study 2D position error of scanning stage is analyzed by 1D heterodyne interferometer calibrator, which can measure 1D linear position error, straightness error, yaw error and pitch error, and perpendicular error. The 2D position error is evaluated by diagonal measurement (ISO230-6). The yaw error and perpendicular error are compensated on the base stage of scanning axis. And, the horizontal straightness error is compensated by cross axis compensation. And, dynamic motion error in scanning motion is analyzed.

  • PDF

ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘 (Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion)

  • 이동우;이경수;이재완
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

A Disctete Model Reference Control With a Neural Network System Ldentification for an Active Four Wheel Steering System

  • 김호용;최창환
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.29-39
    • /
    • 1997
  • A discrete model reference control scheme for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of discrete time nonlinar dynamics. The schmen employs a neural network to identify the plan systems, wher the neural network estimates the nonlinear dynamics of the plant. The algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed. Whith thd resulting identification model which contains the neural networks, the parameters of controller are adjusted. The proposed scheme is applied to the vehicle active four wheel system and shows the validity and effectiveness through simulation. The three-degree-of freedom vehicle handling model is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the yaw rate overshoot reduction of a typical mid-size car is improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response andl smaller side slip angle than the 2WS case.

  • PDF

능동전륜조향장치 및 능동후륜제동장치의 통합제어기 개발 (Development of an Integrated Control System between Active Front Wheel System and Active Rear Brake System)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.17-23
    • /
    • 2012
  • An integrated dynamic control (IDCF) with an active front steering system and an active rear braking system is proposed and developed in this study. A fuzzy logic controller is applied to calculate the desired additional steering angle and desired slip of the rear inner wheel. To validate IDCF system, an eight degree of freedom, nonlinear vehicle model and a sliding mode wheel slip controller are also designed. Various road conditions are used to test the performance. The results show that the yaw rate of IDCF vehicle followed the reference yaw rate and reduced the body slip angle, compared with uncontrolled vehicle. Thus, the IDCF vehicle had enhanced lateral stability and controllability.

자동차의 주행성능 향상을 위한 DYC 4WS 제어방법에 관한 연구 (A Study on the DYC 4WS Control Method for Improving the Dynamic Characteristics of Vehicle)

  • 김형내;김석일;김동룡;김건상
    • 한국자동차공학회논문집
    • /
    • 제6권2호
    • /
    • pp.1-11
    • /
    • 1998
  • The 4WS system is usually developed to improve the maneuverability at low speed and the straight line stability at high speed, but it is found to have the severe understeer characteristics at high speed. Therefore a 4WS vehicle requires to turn the steering wheel much more than a 2WS vehicle at high speeds even a driver goes through the same curved road. In this study, to enhance the cornering performance of the 4WS vehicle at high speed, a DYC 4WS system is proposed based on the nonlinear 4WS system and direct yaw moment control system. Especially the proposed DYC 4WS system is able to realize a zero side slip angle for vehicles and a cornering performance similar to the 2WS vehicle at high speed.

  • PDF

풍력터빈 요 베어링의 유한요소모델링 기법에 관한 연구 (A Study on Fine Element Modeling Method of Yaw Bearing for Wind Turbine)

  • 석호일;고우식;최원호;이승구
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.249-252
    • /
    • 2006
  • Recently, the interest for renewable energy producing system is increasing rapidly. Among these, the wind turbine is most highlighted. It is installed at severe environment and generate electricity for a long time to exceed in 20. Components of wind turbine are required high reliability. Therefore, structural strength analysis for wind turbine is needed an accurate FE model. This paper is to provide reliable fine element modeling method of yaw bearing for wind turbine.

  • PDF

특이섭동이론을 기반으로한 평판모터의 비선형 제어 (Simplified Nonlinear Control for Planar Motor based on Singular Perturbation Theory)

  • 서형덕;신동훈;이영우;정정주
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.289-296
    • /
    • 2015
  • In this paper, we propose the nonlinear control based on singular perturbation theory for position tracking and yaw regulation of planar motor. Singular perturbation theory is characterized by the existence of slow and fast transients in the system dynamics. The proposed method consists of auxiliary control to decouple error dynamics. We develop model reduction with control input. Also, we derIve decoupled error dynamics with auxiliary input. The controller is designed in order to guarantee the desired position and yaw regulation without current feedback or estimation. Simulation results validate the effect of proposed method.

풍력터빈 요 베어링의 유한요소모델링 기법에 관한 연구 (A Study on Finite Element Modeling Method of Yaw Bearing for Wind Turbine)

  • 이동환;고우식;이형우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.918-923
    • /
    • 2007
  • Recently, the interest for renewable energy producing system is increasing rapidly. Among these, the wind turbine is most highlighted. It is installed at severe environment and generated electricity for a long time to exceed twenty years. Components of wind turbine are required high reliability. Therefore, structural strength analysis for wind turbine is needed for an accurate FE model. This paper is to provide reliable fine element modeling method of yaw bearing for wind turbine.

패러포일 투하 시스템의 궤적 추종 제어기의 설계 (Design of Trajectory Following Controller for Parafoil Airdrop System)

  • 양빈;최선영;이정태;임동근;황정원;박승엽
    • 한국항행학회논문지
    • /
    • 제18권3호
    • /
    • pp.215-222
    • /
    • 2014
  • 본 논문은 패러포일 투하 시스템을 설계하고 분석하는데 있다. 패러포일 시스템의 6-자유도(6-DOF) 모델을 새우고, 비선형 모델 예측 제어와 PID 제어 방법이 펄럭 편 요각을 제어하기 위해 각각 적용되었다. 펄럭 편 요각의 오버슈트 시간 및 세팅 시간의 결과를 비교하면서 PID제어 방법을 사용하는 것으로부터 펄럭 편 요각이 좀 더 안정화 되는 것을 확인하였다. 그런 다음 MATLAB에 의해 수행된 궤적 추종 효과의 시뮬레이션 결과에 의해 궤적 추종 제어기가 설계되었다. 패러포일 궤적의 측 방향 오차가 그것의 측 방향 편차 제어 방법에 의해 제거 될 수 있었다. 참고로 측 방향 편차는 현재 경로계획의 보간법에 의해 얻어졌다. 그리고 설계된 궤적을 사용하면서, 풍 외란을 추가하는 것으로부터 궤적 추종 시스템이 시뮬레이션 되었다. 시뮬레이션 결과는 풍외란이 PID로 제어되는 펄럭 편 요각 변화에 의해 제거됨으로써 설계된 궤적에 아주 만족하였다.