• Title/Summary/Keyword: yarn thickness

Search Result 64, Processing Time 0.022 seconds

A Study on the Crease Recovery Behavior of Core-spun Yarn Woven Fabrics (코어방적사직물의 구김회복거동에 관한 연구)

  • Kwon Ok-Kyung;Sung Su-Kwang;Kim Hyo-Dae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.13 no.3 s.31
    • /
    • pp.259-267
    • /
    • 1989
  • In this paper, the fabric specimen undergoes repeated laundering under given condition. After this cyclic laundering was applied, the crease recoveries of the specimen were measured using shirley crease revovery tester in order to evaluate the effect of factors at given condition during crease deformation. 5 samples of grey plain cloth were desized, alkali-scoured, bleached, whased with water, and air-dried. All tests were made on samples preconditioned to $65\%\;RH\;and\;20^{\circ}C$. The experimental results were analysed statistically to relate crease recoveries and the properties of smaples, recovery periods (time) of crease. Furthermore, the crease recoveries of core-spun yarn woven fabrics were discussed in comparison with those values for $100\%$ combed cotton yarn woven fabric and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric. The results obtained are as follows; 1. Regardless of materials, remarkable decrease are observed in crease recoveries about 1-5 cycles of the repeated laundering, but slack decrease are observed in crease recoveries after 5 cycle of the re-peated laundering. 2. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to recovery periods (t) of crease as follows; log$\alpha$=0.01415 log t+2.1168 ($r^2=0.94$) 3. Core-spun yarn woven fabrics were superior to $100\%$ combed cotton yarn woven fabrics and $65\%$ polyester $35\%$ carded cotton blended yarn woven fabric in crease recoveries. 4. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to cover factor (CF), thickness (T) at pressure 0.5 $gf/cm^2$, weight (W) as follows; log$\alpha$=-0.3482 log CF-0.4924 log T-0.4727 W+2.4243 ($r^2=0.88$) 5. Crease recoveries ($\alpha$) of core-spun yarn woven fabrics are relate to 2HB/B, 2HB/W, $\sqrt[3]{B/W}$, WC/T which are concerning to formation of weared clothes and bending Iran formation behavior as follows: log $\alpha$=0.0091 2HB/B+0.4667 2HB/W+0.0185 $\sqrt[3]{B/W}$+0.0114 WC/T+1.8433 ($r^2=0.86$)

  • PDF

The Mechanical Properties and Hand Evaluation of Clothing Fabrics using Soluble Spun Yarn and Stretch Fibers (용출형 방적사와 스트레치 소재를 사용한 의류용 직물의 역학적 특성 및 태분석)

  • Choi, Hyunseuk;Jang, Hyunmi;Jung, Moonkyu;Jeon, Younhee
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.312-322
    • /
    • 2019
  • The mechanical properties of developed fabrics which were composed of soluble yarns and stretch fibers were analyzed using the Kawabata Evaluation System. The following findings were obtained from this investigation. Fabrics woven with lightweight yarns can be easily deformed by external forces. But when the fabric were woven using thick lightweight yarns reduced the slippage between the fibers, which makes it difficult to deform due to external force, thereby maintaining a certain space from the human body. As for the weight of the fabric per unit thickness, it was found that fabrics were compose of lightweight spun yarn was lightweight relatively. Lightweight yarns were more flexible than regular yarns because of the reduced bending and shear properties that greatly affect the lattice pattern. smoother, more flexible, and the better the bend was recovered. As fabrics increased content of using of lightweight spun yarn was increased flexible and smooth, and bending recovery.

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

A Comparative Study on Decision of The In-Plane Permeability of the Geotextile (Geotexitile의 평면투수성 결정에 관한 비교연구)

  • 권우남;박희명;이상호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.135-143
    • /
    • 1989
  • The in-plane permeabilities for domestic geotextile products are calculated by some theoretical formulas and compared with them obtained by experiments to examine the suitability of those formulas. The results obtained are as follows: 1. It appears that the diameter of the filament yarn is larger and more uniform than that of the staple fiber according to the microscopic analysis on the geotextile 2. The in-plane permeability of the geotextile shows that the theoretical values by drag and channel theory is close to the experimental ones. 3. The porosity of the geotextile is hardly influenced by normal pressure. 4. In the case of the same thickness of the geotextile the side surface area of the filament yarn is larger than that of the staple fiber. 5. The capillary height of the geotextile shows that the theoretical values is close to the experimental ones and thick geotextile is higher than thin geotextile.

  • PDF

Effects of Weaving Machine Characteristics on the Physical Properties of PET Fabrics (IV) (직기 특성이 PET직물 물성에 미치는 영향(IV))

  • Kim Seung Jin;Jin Young Dae;Kang Ji man;Jung Gee Jin
    • Textile Coloration and Finishing
    • /
    • v.16 no.5
    • /
    • pp.54-61
    • /
    • 2004
  • This research surveys the differences of fabric mechanical properties with the different looms and the fabric positions according to the warp and weft yarn tensions on the Vamatex and Omega-Panter looms respectively. For this purpose, the grey fabrics woven by PET filament using two test looms are dyed and finished. The processing shrinkages are measured on each processes such as dryer, scouring, pre-set, dyeing and final-set using the fabric density and width. The mechanical properties of the finished fabrics are measured and discussed with relation to the warp and weft yarn tensions of the two looms and the fabric positions. In addition, the fabric thickness according to the fabric positions such as right, left selvedges and center of the fabrics is also measured and discussed with the characteristics of the Vamatex and Omega-Panter looms.

Effect of Fiber Content, Yarn Size and Construction of Knit Fabrics on the Buffering Capacity against Water Vapor (편성물의 섬유의 종류, 실의 굵기 및 니트타입에 따른 투습완충능력)

  • Yoo, Hwa-Sook;Hu, Yoon-Sook;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.1
    • /
    • pp.228-238
    • /
    • 1996
  • The purpose of this study was to evaluate the effect of chacteristics of knit fabrics on the microclimate of the skin simulating system. To determine the effect of characteristics of knit fabrics, vapor state of sweat pulse was simulated in the closed system. Different contents of fibers such as cotton, wool and polyester with different yarn size and knit types were chosen for specimens. The changes of humidity and temperature of air layer in the simulated systems were measured. Buffering indices, $K_d$ and $\beta_r$, were determined by considering $\alpha_p, \DeltaP_{max}, t_{max}, and tan\beta$. Physical properties of knit fabrics such as thickness, porosity, air resistance and moisture vapor transport were measured. Results showed that vapor pressure of wool was lower than cotton or polyester This was attributed to the hydrophilicity of wool which absorbed moisture rather quickly and retained in the knit fabric. The time to decrease vapor pressure was faster for polyester than cotton or wool. As a result, $K_d$ was in the order of wool> polye, item> cotton. $\beta_r$ of wool was rower than cotton or polyester due to its lowers porosity and slower desorption rate. For the yarn size, $K_d$ was in the order of 80's> 60's> 30's; thinner and lighter yarn showed better water vapor transport property. For knit type, buffering capacity of single jersey was better than interlock knit fabric. Statistical analysis showed that the air permeability was the most influential factor far the water vapor transport properties.

  • PDF

A Study on the Possibility of Using Fire-Retardant Working Cloth Made from Silicon Carbide (SiC) Composite Spun Yarns (Silicon Carbide (SiC) 복합방적사로부터 제조된 원단의 방화복 활용 가능성에 관한 연구)

  • Kang, Hyun-Ju;Kang, Gun-Woong;Kwon, Oh-Hoon;Kwon, Hyeon-Myoung;Hwang, Ye-Eun;Jeon, Hye-Ji;Joo, Jong-Hyun;Park, Yong-Wan
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.149-156
    • /
    • 2021
  • The mechanical properties of a woven fabric made of SiC (silicon carbide) fibers were determined in this study using the KES-FB system. The woven fabric is used in high heat settings above 1500℃. Composite spun yarns were used to create SiC fibers. By analyzing the wearing properties, we studied the prospect of using the textiles as fire-retardant work clothes. Mechanical properties determine the wearing attributes. Therefore, the tensile linearity (LT), tensile resilience (RT), and shear stiffness (G) values of the fabric varied according to the yarn type (filament or spun yarn). The thickness, weight per square meter, and density of the fabric were found to have an effect on the shear hysteresis (2HG) and compression resilience (RC) values. In terms of wearable clothing qualities, the fabric qualities of the SiC composite yarn demonstrated the highest ratio of compressive energy to thickness (WC/T), which indicates bulkiness. The fabric manufactured from SiC composite yarns passed the KFI criteria for carbonation length and cumulative flame time in the flame-retardant test. Therefore, we discovered that the material can be used as a fire-resistant work cloth.

Characterizing Yarn Thickness Variation by Correlograms

  • Huh You;Kim Jong S.;Kim Sung H.;Suh M. W.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.66-71
    • /
    • 2005
  • The surface evenness and texture are closely related with the irregularity of yam thickness. Besides, yam thickness variation has an important role to influence the yam performance and the textile process efficiency. Thus, the information not only on the yam thickness, but also on the short- term irregular characteristics that have not been known before is required for enhancing the qualities of textile products. This paper reports the results of a study about the yam thickness and its variation for various types of yam on the basis of a new measurement system applying a laser slit beam as a light source. The new method delivers effective information on the irregularity. The analysis of the measured signal confirms that the visual shade created by the yam doubling and twisting can be measured and the yam thickness characteristics can be represented by corre­lograms. Depending on yam types, correlograms have different shapes and can be approximated to an exponentially decaying function with or without fluctuating magnitude. In addition, the effective information on the yam irregularity can be influ­enced by the sampling length interval of the measuring device used for tests.

Formability of Thermoplastic Laminar Composite depending on the Types of- Fabric (Fabric 형태에 따른 열가소성수지 적층복합재료의 성형성)

  • Shin, Ick-Jae;Lee, Dong-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1338-1346
    • /
    • 2003
  • Three-dimensional formability of the thermoplastic laminar composite was studied according to manufacturing conditions. Five different types of the plain weave fabric were used as reinforcement with PET matrix. The square blank was made by press consolidation technique and formed in the type hemisphere. B-factor defined as the ratio of width of yarn and distance between yarns was used as the factor of formability in the type of plain weave fabric. The formability of PET/Glass fabric laminar composite was estimated in terms of forming rate and B-factor with the thickness distribution, area ratio of blank, and intra-ply shear angle. The thickness distribution across hemisphere was strongly affected by the B-factor, forming rate and blank thickness. The area ratio of blank was increased with B-factor, forming rate and blank thickness. Also, it was found that the intra-ply shear angle depends on the B-factor and forming rate.

A Study on the Mechanical Properties to the Weaving Design & Finishing Condition of Wool Fabric (모직물의 제직 및 가공조건에 따른 직물 역학특성 변화에 관한 연구-FAST System에 의한 직물 봉제성 관리-)

  • 홍성철;김승진;김석근
    • Textile Coloration and Finishing
    • /
    • v.12 no.3
    • /
    • pp.159-165
    • /
    • 2000
  • This study surveys the fabric mechanical properties according to the weaving design & finishing conditions of wool fabrics for quality control in the process. For this purpose, 8 kinds of Twill groups and 3 kinds of Plain groups weave fabrics, totally 428 woven fabrics are prepared with change of the yarn count, density and finishing method. Fabric thickness, bending rigidity, extensibility, shear rigidity, formability of the fabrics were measured and discussed with weaving design & finishing conditions.

  • PDF