Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M. (Department of Textile Engineering, Amirkabir University of Technology) ;
  • Najar S. Shaikhzadeh (Department of Textile Engineering, Amirkabir University of Technology) ;
  • Etrati S. M. (Department of Textile Engineering, Amirkabir University of Technology) ;
  • Toosi Z. Khorram (Department of Textile Engineering, Amirkabir University of Technology)
  • Published : 2006.09.01

Abstract

High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

Keywords

References

  1. R. Postle, J. Text. Inst., 62, 219 (1971)
  2. R. Postle, J. Text. Inst., 65, 155 (1974) https://doi.org/10.1080/00405007408630442
  3. E. Yi and G. Cho, Text. Res. J., 70, 828 (2000) https://doi.org/10.1177/004051750007000911
  4. C. Kim, G. Cho, H. Yoon, and S. Park, Text. Res. J., 73, 685 (2003) https://doi.org/10.1177/004051750307300805
  5. W. Xu, T. Shyr, and M. Yao, Textile Asia, 32, 30 (2001)
  6. S. Kawabata, 'The Standardization and Analysis of Hand Evaluation', 2nd Ed., The Hand Evaluation and Standardization Committee, Text. Mach. Soc., Japan, 1980
  7. R. Postle, G. A. Carnaby, and S. de Jong in 'The Mechanics of Wool Structures', Chap. 15, pp.387-410, Ellis Horwood, Chichester, West Sussex, 1988
  8. A. De Boos, 'SiroFAST User's Manual', Operation, Interpretation and Application, 1991
  9. J. O. Ajayi and H. M. Elder, J. Text. Inst., 88, 232 (1997) https://doi.org/10.1080/00405009708658547
  10. D. Aliouche and P. Viallier, Text. Res. J., 70, 939 (2000) https://doi.org/10.1177/004051750007001101
  11. S. K. Punj, A. Mukhopadhyay, and P. Chatterjee, Textile Asia, 31, 33 (2000)
  12. P. M. Taylor and D. M. Pollet, Text. Res. J., 72, 983 (2002) https://doi.org/10.1177/004051750207201109
  13. A. Mukhopadhyay, R. C. D. Kaushik, and V. K. Kothari, Indian Journal of Fibre & Textile Research, 28, 36 (2003)
  14. A. K. Soe, T. Matsuo, M. Takahashi, and M. Nakajima, Text. Res. J., 73, 861 (2003) https://doi.org/10.1177/004051750307301003
  15. C. M. van. Wyk, J. Text. Inst., 37, 285 (1946) https://doi.org/10.1080/19447024608659279
  16. S. de Jong, J. W. Snaith, and N. A. Michie, Text. Res. J., 56 759 (1986) https://doi.org/10.1177/004051758605601208
  17. T. Komori and M. Itoh, Text. Res. J., 67, 204 (1997) https://doi.org/10.1177/004051759706700308
  18. T. Matsuo and D. R. Lee, Journal of Federation of Asian Professional Textile Association (FAPTA), 4, 31 (1997)
  19. N. B. Beil and W. W. Roberts, Text. Res. J., 72, 341 (2002) https://doi.org/10.1177/004051750207200411
  20. N. B. Beil and W. W. Roberts, Text. Res. J., 72, 375 (2002) https://doi.org/10.1177/004051750207200501
  21. Y. Hou and M.W. Suh, Text. Res. J., 73, 767 (2003) https://doi.org/10.1177/004051750307300904
  22. L. Virto, M. Carbonell, and A. Naik, Text. Res. J., 72, 474 (2002) https://doi.org/10.1177/004051750207200602
  23. D. V. Parikh, T. A. Calamari, P. S. Sawhney, K. Q. Robert, L. Kimmel, E. Glynn, O. Jirsak, I. Mackova, and T. Saunders, Text. Res. J., 72, 550 (2002) https://doi.org/10.1177/004051750207200615
  24. D. V. Parikh, T. A. Calamari, and W. R. Goynes, Text. Res. J., 74, 7 (2004) https://doi.org/10.1177/004051750407400102
  25. I. Krucinska, I. Jalmuzna, and W. Zurek, Text. Res. J., 74, 127 (2004) https://doi.org/10.1177/004051750407400208
  26. J. Fan, I. V. Gardinner, and L. Hunter, Text. Res. J., 72, 21 (2002) https://doi.org/10.1177/004051750207200104
  27. W. Huang and T. K. Ghosh, Text. Res. J., 72, 103 (2002) https://doi.org/10.1177/004051750207200203
  28. P. Potluri, M. A. Wilding, and A. Memon, Text. Res. J., 72, 1073 (2002) https://doi.org/10.1177/004051750207201206
  29. S. Shaikhzadeh Najar, S. M. Etrati, M. H. Seyed-Esfahani, and H. Hadi, J. Text. Inst., 96, 311 (2005) https://doi.org/10.1533/joti.2005.0015
  30. M. Bakhtiari, M.Sc. Dissertation, Textile Engineering Dept., Amirkabir Univ. of Tech. (AUT), Iran, 2005
  31. D. J. Spencer, 'Knitting Technology', 2nd Ed., pp.50-84, Woodhead Publishing Ltd., Cambridge, England, 1989
  32. J. E. Booth, 'Principles of Textile Testing', 3rd Ed., Butterworth, London, 1968
  33. B. P. Saville, 'Physical Testing of Textiles', First Published, Woodhead Publishing Ltd., Association with The Textile Institute, Cambridge, 2000
  34. Shirley Development Ltd., The Catalogue, Catalogue No. 8, England, 2005