• Title/Summary/Keyword: yam

Search Result 400, Processing Time 0.029 seconds

Adaptation of Soil Cement for Sub base Treatment in Highway (고속도로 노상처리를 위한 소일시멘트 적용)

  • 장용채;김홍종
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.126-131
    • /
    • 2003
  • Kochang (Chollabuk-Do) located in the west-southern area of the Korea and passed by the West Coast Highway has yellow collar soil(Hwang-To) pertaining primarily clay. Hwang-To serve as a great soil for growing watermelon and yam but are not strong enough to be used as subgrade material for constructing roads. Subgrade material of the study site was not qualified for standard of material quality. Properties of subgrade layers showed that strength of subgrade material is not strong enough to sustain the subgrade strength in constructing roads since No. 200 passing ration is 25 - 82 % and ground water level is nearly equal to subgrade level. The objective of this study is to present the methods obtaining proper subgrade strength of cutting area to construct secure and solid highways in the fragile area.

  • PDF

A Study on Shrinkage the Weft Knitted Fabrics (위편포의 수축에 관한 연구)

  • Sung Baek Joo;Choi Suk Chul;Chung Soon Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.4 no.1_2
    • /
    • pp.25-33
    • /
    • 1980
  • The studies on shrinkage and characteristics of the weft knitted fabrics were investigated under the various dry and wet treating conditions. Various relaxation values were found out according to treating conditions. The characteristics of knitted fabrics such as shrinkage rate, thickness, spirality, elongation and recovery were also measured. The used knitting yams were OE (open-end) cotton and POY (pre-oriented yarn)-DTY (draw textured yam) polyester. The conclusions obtained in this study are as follows. 1. In case of dry relaxation little change of Ks values was seen with increasing time after 48 hours. So it was found that relaxation shrinkage of dry relaxation reached its maximal state in about 48 hours. 2. In case of wet relaxation, higher Ks values were observed, in comparision with those of dry one and higher shrinkage rates were also observed. But when experimental temperature was constant, sudden marked increases in Ks values and shrinkage rates appeared through the initial 4 hours, and after that time little change was seen in them. 3. As Ks value increases, thickness also increased. But thickness showed to some degree stability around Ks value 23. 4. As Ks value increases, spirality values also increased gradually. But little change of spirality values was observed above a certain Ks values (cotton 22.5, polyester 21.5). 5. As Ks value increases, the elongation decreased under a certain load, and the recovery was random.

  • PDF

A Case Study on the Adaptation of Soil-cement for the Subgrade Treatmentin the Seohean-Expressway (서해안 고속도로의 노상처리를 위한 Soil-cement 적용 사례연구)

  • Chang, Yong-Chai;Kim, Hong-Jong;Jeon, Han-Yong
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.485-489
    • /
    • 2003
  • The region of Kochang(Chollabuk-Do) located in the west-southern area of the Korea and passed by the West Coast Expressway has the yellow collar soil(Hwang-To) primarily containing clay. Hwang-To serves as a soil appropriate for growing the watermelon and yam, but as a subgrade material not strong for constructing the roads. Particularly, the subgrade material of this study site was not qualified for the standard of the subgrade material quality. The properties of the subgrade layer showed that the strength of the subgrade material was not strong enough to sustain the subgrade strength in constructing the roads since the passing ratio of the No. 200 sieve was about 25% to 82% and the ground water level was early equal to subgrade one. Thus, the objective of this study was to present the methods obtaining the proper subgrade strength of cutting area to construct the secure and solid expressways in the fragile area.

Effect of BaF2 as a Flux in Solid State Synthesis of Y3Al5O12:Ce3+ (고상법을 이용한 Y3Al5O12:Ce3+의 제조에서 BaF2가 미치는 영향)

  • Won, Hyung-Seok;Hayk, Nersisyan;Won, Chang-Whan;Won, Hyung-Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.604-610
    • /
    • 2011
  • The effect of $BaF_2$ flux in $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) formation was investigated. Phase transformation of $Y_3Al_5O_{12}$(YAG) was characterized by using XRD, SEM, and TEM-EDS, and it was revealed that the sequential formation of the $Y_4Al_2O_9$(YAM), $YAlO_3$(YAP) and $Y_3Al_5O_{12}$(YAG) in the temperature range of 1000-1500$^{\circ}C$. Single phase of YAG was revealed from 1300$^{\circ}C$. In order to find out the effect of $BaF_2$ flux, three modeling experiments between starting materials (1.5$Al_2O_3$-2.5$Y_2O_3$, $Y_2O_3$-$BaF_2$, and $Al_2O_3$-$BaF_2$) were done. These modeling experiments showed that the nucleation process occurs via the dissolution-precipitation mechanism, whereas the grain growth process is controlled via the liquid-phase diffusion route. YAG:Ce phosphor particles prepared using a proposed technique exhibit a spherical shape, high crystallinity, and an emission intensity. According to the experimental results conducted in this investigation, 5% of $BaF_2$ was the best concentration for physical, chemical and optical properties of $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) that is approximately 10-15% greater than that of commercial phosphor powder.

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

Collapse resistance of steel frames in two-side-column-removal scenario: Analytical method and design approach

  • Zhang, JingZhou;Yam, Michael C.H.;Soltanieh, Ghazaleh;Feng, Ran
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.485-496
    • /
    • 2021
  • So far analytical methods on collapse assessment of three-dimensional (3-D) steel frames have mainly focused on a single-column-removal scenario. However, the collapse of the Federal Building in the US due to car bomb explosion indicated that the loss of multiple columns may occur in the real structures, wherein the structures are more vulnerable to collapse. Meanwhile, the General Services Administration (GSA) in the US suggested that the removal of side columns of the structure has a great possibility to cause collapse. Therefore, this paper analytically deals with the robustness of 3-D steel frames in a two-side-column-removal (TSCR) scenario. Analytical method is first proposed to determine the collapse resistance of the frame during this column-removal procedure. The reliability of the analytical method is verified by the finite element results. Moreover, a design-based methodology is proposed to quickly assess the robustness of the frame due to a TSCR scenario. It is found the analytical method can reasonably predict the resistance-displacement relationship of the frame in the TSCR scenario, with an error generally less than 10%. The parametric numerical analyses suggest that the slab thickness mainly affects the plastic bearing capacity of the frame. The rebar diameter mainly affects the capacity of the frame at large displacement. However, the steel beam section height affects both the plastic and ultimate bearing capacity of the frame. A case study on a six-storey steel frame shows that the design-based methodology provides a conservative prediction on the robustness of the frame.

Alteration of cellular events in tooth development by chemical chaperon, Tauroursodeoxycholic acid treatment

  • Lee, Eui-Seon;Aryal, Yam Prasad;Kim, Tae-Young;Pokharel, Elina;Kim, Harim;Sung, Shijin;Sohn, Wern-Joo;Lee, Youngkyun;An, Chang-Hyeon;Kim, Jae-Young
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.190-196
    • /
    • 2020
  • Several factors, including genetic and environmental insults, impede protein folding and secretion in the endoplasmic reticulum (ER). Accumulation of unfolded or mis-folded protein in the ER manifests as ER stress. To cope with this morbid condition of the ER, recent data has suggested that the intracellular event of an unfolded protein response plays a critical role in managing the secretory load and maintaining proteostasis in the ER. Tauroursodeoxycholic acid (TUDCA) is a chemical chaperone and hydrophilic bile acid that is known to inhibit apoptosis by attenuating ER stress. Numerous studies have revealed that TUDCA affects hepatic diseases, obesity, and inflammatory illnesses. Recently, molecular regulation of ER stress in tooth development, especially during the secretory stage, has been studied. Therefore, in this study, we examined the developmental role of ER stress regulation in tooth morphogenesis using in vitro organ cultivation methods with a chemical chaperone treatment, TUDCA. Altered cellular events including proliferation, apoptosis, and dentinogenesis were examined using immunostaining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, altered localization patterns of the formation of hard tissue matrices related to molecules, including amelogenin and nestin, were examined to assess their morphological changes. Based on our findings, modulating the role of the chemical chaperone TUDCA in tooth morphogenesis, especially through the modulation of cellular proliferation and apoptosis, could be applied as a supporting data for tooth regeneration for future studies.

An algorithm for quantifying dynamic buckling and post-buckling behavior of delaminated FRP plates with a rectangular hole stiffened by smart (SMA) stitches

  • Soltanieh, Ghazaleh;Yam, Michael C.H.
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.745-760
    • /
    • 2021
  • Dynamic buckling of structure is one of the failure modes that needs to be considered since it may result in catastrophic failure of the structure in a short period of time. For a thin fiber-reinforced polymer (FRP) plate under compression, buckling is an inherent hazard which will be intensified by the existence of defects like holes, cracks, and delamination. On the other hand, the growth of the delamination is another prime concern for thin FRP plates. In the current paper, reinforcing the plates against buckling is realized by using SMA wires in the form of stitches. A numerical framework is proposed to simulate the dynamic instability emphasizing the effect of the SMA stitches in suppressing delamination growth. The suggested algorithm is more accurate than the other methods when considering the transformation point of the SMA wires and the modeling of the cohesive zone using simple and yet reliable technique. The computational design of the method by producing the line by line orders leads to a simple algorithm for simulating the super-elastic behavior. The Lagoudas constitutive model of the SMA material is implemented in the form of user material subroutines (VUMAT). The normal bilinear spring model is used to reproduce the cohesive zone behavior. The nonlinear finite element formulation is programmed into FORTRAN using the Newmark-beta numerical time-integration approach. The obtained results are compared with the results obtained by the finite element method using ABAQUS/Explicit solver. The obtained results by the proposed algorithm and those by ABAQUS are in good agreement.

Genetic Diversity among Dioscorea, spp. Using Molecular Markers (분자표지를 이용한 마(Dioscorea spp.)의 다양성 분석)

  • Chang, K.J.;Choi, I.Y.;Park, J.H.;Park, J.I.;Yoon, B.S.;Kim, N.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • A lot of clones of the genus Dioscorea species have been introduced from some tropical and subtropical regions since 1997. The aim of this study was to determine characteristics of the production process in yams(Dioscorea spp). By utilizing 51clones of water yams(Dioscorea spp), some morphological characteristics were investigated at the field. Intraspecific genetic relationship of 51 variation types of the Yam classified by their external morphological characteristics such as leaf and tuber shape were assessed by DNA using random and specific primers. D. Alata and D. opposita were showed different relationship between yield and the growth of their aboveground parts. This suggests that even in the same species there were differences in yield volume and translocation of assimilation products, depending on the types. D. alata were distinguished from others Dioscorea species at 62% level in AFLP analysis. Also in principal component analysis, D. alata were showed the class from II to V.

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.589-605
    • /
    • 2023
  • This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.