Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.11.604

Effect of BaF2 as a Flux in Solid State Synthesis of Y3Al5O12:Ce3+  

Won, Hyung-Seok (Chungnam National University Department of nano materials)
Hayk, Nersisyan (Chungnam National University Department of nano materials)
Won, Chang-Whan (Chungnam National University Department of nano materials)
Won, Hyung-Il (Chungnam National University Department of nano materials)
Publication Information
Korean Journal of Materials Research / v.21, no.11, 2011 , pp. 604-610 More about this Journal
Abstract
The effect of $BaF_2$ flux in $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) formation was investigated. Phase transformation of $Y_3Al_5O_{12}$(YAG) was characterized by using XRD, SEM, and TEM-EDS, and it was revealed that the sequential formation of the $Y_4Al_2O_9$(YAM), $YAlO_3$(YAP) and $Y_3Al_5O_{12}$(YAG) in the temperature range of 1000-1500$^{\circ}C$. Single phase of YAG was revealed from 1300$^{\circ}C$. In order to find out the effect of $BaF_2$ flux, three modeling experiments between starting materials (1.5$Al_2O_3$-2.5$Y_2O_3$, $Y_2O_3$-$BaF_2$, and $Al_2O_3$-$BaF_2$) were done. These modeling experiments showed that the nucleation process occurs via the dissolution-precipitation mechanism, whereas the grain growth process is controlled via the liquid-phase diffusion route. YAG:Ce phosphor particles prepared using a proposed technique exhibit a spherical shape, high crystallinity, and an emission intensity. According to the experimental results conducted in this investigation, 5% of $BaF_2$ was the best concentration for physical, chemical and optical properties of $Y_3Al_5O_{12}:Ce^{3+}$(YAG:Ce) that is approximately 10-15% greater than that of commercial phosphor powder.
Keywords
$Y_3Al_5O_{12}:Ce^{2+}$; barium fluoride; flux; particle shape;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. J. Yoon, J. H. In, H. C. Lee and C. H. Lee, Korean J. Chem. Eng., 23, 842 (2006).   DOI
2 Q. X. Zheng, B. Li, H. D. Zhang, J. J. Zheng, M. H. Jiang and X. T. Tao, J. Supercrit. Fluids, 50, 77 (2009).   DOI   ScienceOn
3 Y. Li, J. Zhang, Q. Xiao and R. Zeng, Mater. Lett., 62, 3787 (2008).   DOI   ScienceOn
4 X. Li and W. Wang, Powder Tech., 196, 26 (2009).   DOI   ScienceOn
5 L. Mancic, K. Marinkovic, B. A. Marinkovic, M. Dramicanin, O. Milosevic, J. Eur. Ceram. Soc., 30, 577 (2010).   DOI   ScienceOn
6 S. H. Lee, D. S. Jung, J. M. Han, H. Y. Koo and Y. C. Kang, J. Alloy. Comp., 477, 776 (2009).   DOI   ScienceOn
7 M. Suarez, A. Fernandez, J. L. Menendez and R. Torrecillas, J. Alloy. Comp., 493, 391 (2010).   DOI   ScienceOn
8 M. L. Saladino, G. Nasillo, D. C. Martino and E. Caponetti, J. Alloy. Comp., 491, 737 (2010).   DOI   ScienceOn
9 L. Yang, T. Lu, H. Xu and N. Wei, J. Alloy. Comp., 484, 449 (2009).   DOI   ScienceOn
10 H. Jiao, Q. Ma, L. He, Z. Liu and Q. Wu, Powder Tech., 198, 229 (2010).   DOI   ScienceOn
11 K. Zhang, H. Z. Liu, Y. T. Wu and W. B. Hu, J. Alloy. Comp., 453, 265 (2008).   DOI   ScienceOn
12 Y. Sang, H. Liu, Y. Lv, J. Wang, T. Chen, D. Liu, X. Zhang, H. Qin, X. Wang and R. I. Boughton, J. Alloy. Comp., 490, 459 (2010).   DOI   ScienceOn
13 V. Lupei, J. Alloys Comp., 451, 52 (2008).   DOI   ScienceOn
14 M. Nakielska, J. Sarnecki, M. Malinowski and R. Piramidowicz, J. Alloys Comp., 451, 190 (2008).   DOI   ScienceOn
15 J. G. Li, T. Ikegami, J. H. Lee, T. Mori and Y. Yajima, J. Mater. Res., 15, 1864 (2000).   DOI   ScienceOn
16 X. D. Zhang, H. Liu, W. He, J. Y. Wang, X. Li and R. I. Boughton, J. Cryst. Growth, 275, e1913 (2005).   DOI   ScienceOn
17 Z. Wu, X. Zhang, W. He, Y. Du, N. Jia, P. Liu and F. Bu, J. Alloy. Comp., 472, 576 (2009).   DOI   ScienceOn
18 Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri and K. Arai, Mater. Res. Bull., 38, 1257 (2003).   DOI   ScienceOn
19 H. Yang, L. Yuan, G. Zhu, A. Yu and H. Xu, Mater. Lett., 63, 2271 (2009).   DOI   ScienceOn
20 J. H. In, H. C. Lee, M. J. Yoon, K. K. Lee, J. W. Lee and C. H. Lee, J. Supercrit. Fluids, 40, 389 (2007).   DOI   ScienceOn