• Title/Summary/Keyword: xylitol

Search Result 193, Processing Time 0.034 seconds

Xylan 분해균주인 Bacillus stearothermophilus의 오탄당 이용

  • 이효선;조쌍구;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.385-392
    • /
    • 1996
  • Bacillus stearotheymophilus, a potent xylanolytic bacterium isolated from soil, was tested for the strain's strategies of pentose utilization and the evidence of substrate preferences. The strain metabolized glucose, xylose, ribose, maltose, cellobiose, sucrose, arabinose and xylitol. The efficacy of the sugars as a carbon and energy source in this strain was of the order named above. The organism, however, could not grow on glycerol as a sole growth substrate. During cultivation on a mixture of glucose and xylose or arabinose, the major hydrolytic products of xylan, B. stearothermophilus displayed classical diauxic growth in which glucose was utilized during the first phase. On the other hand, the pentose utilization was prevented immediately upon addition of glucose. Cellobiose was preferred over xylose or arabinose. In contrast, maltose and pentose were co-utilized, and also no preference on between xylose and arabinose. Enzymatic studies indicated that B. stearothermophilus possessed constitutive hexokinase, a key enzyme of the glucose metabolic system. While, the production of $^{D}$-xylose isomerase, $^{D}$-xylulokinase and $^{D}$-arabinose isomerase essential for pentose phosphate pathway were induced by xylose, xylan, and xylitol but repressed by glucose. Taken together, the results suggested that the sequential utilization of B. stearothermophilus would be mediated by catabolite regulatory mechanisms such as catabolite inhibition or inducer exclusion.

  • PDF

Cloning of the Xylose Reductase Gene of Candida milleri

  • Sim, Hyoun-Soo;Park, Eun-Hee;Kwon, Se-Young;Choi, Sang-Ki;Lee, Su-Han;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.984-992
    • /
    • 2013
  • The entire nucleotide sequence of the xylose reductase (XR) gene in Candida milleri CBS8195 sourdough yeast was determined by degenerate polymerase chain reaction (PCR) and genome walking. The sequence analysis revealed an open-reading frame of 981 bp that encoded 326 amino acids with a predicted molecular mass of 36.7 kDa. The deduced amino acid sequence of XR of C. milleri was 64.7% homologous to that of Kluyveromyces lactis. The cloned XR gene was expressed in Saccharomyces cerevisiae, and the resulting recombinant S. cerevisiae strain produced xylitol from xylose, indicating that the C. milleri XR introduced into S. cerevisiae is functional. An enzymatic activity assay and semiquantitative reverse transcription-PCR revealed that the expression of CmXR was induced by xylose. The GenBank Accession No. for CmXR is KC599203.

Flow Behavior of Sweet Potato Starch in Mixed Sugar Systems

  • Cho, Sun-A;Kim, Bae-Young;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.249-252
    • /
    • 2008
  • Flow behaviors of sweet potato starch (SPS) pastes (5% w/w) were studied in the presence of various sugars (xylose, glucose, fructose and sucrose) and sugar alcohols (xylitol and sorbitol). The flow properties of SPS-sugar mixtures were determined from the rheological parameters of power law model. The vane method was also employed for determining yield stresses of SPS-sugar mixtures directly under a controlled low shear rate. At $25^{\circ}C$ all the samples showed shear-thinning behaviors ($n=0.35{\sim}0.44$) with yield stress. The consistency index (K) values of SPS-sugar mixtures increased in the following order: sorbitol> xylitol> control (no sugar)> sucrose> fructose> glucose> xylose, showing that the addition of sugar alcohols enhanced the K values. The yield stress values were reduced in the presence of ugars and sugar alcohols and they also increased with an increase in swelling power of starch granules in the SPS-sugar mixture systems.

Isolation and Identification of Xylose fermenting Yeast (Xylose 발효효모의 분리 및 성질)

  • 김남순;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.505-509
    • /
    • 1988
  • Ethanol productivity of a xylose fermenting yeast (Candida sp. X-6-4l) isolated from soil was investigated in laboratory scale using Erlenmeyer flask and mini-jar tormentor. The optimal conditions of xylose fermentation in flask experiment were pH 4, asparagine as nitrogen source, xylose 20g/$\ell$, and in these condition, ethanol yield was about 80% to theoretical yield. Using mini-jar fermentor containing 5% total sugar with 2.5% xylose and 2.5% glucose, we obtained 2.3%(v/ v) ethanol and the corresponding efficiency was 72.3% of total sugar. In this case, the consumming speed of sugar under aerobic condition was faster than that of anaerobic condition, and glucose was used previously to xylose. The optimum concentration of xylose for ethanol fermentation in mini-jar fer-mentor scale was 5%, and the efficiency was 69% of total sugar(Alc.2.2% v/v).

  • PDF

Overexpression of Mutant Galactose Permease (ScGal2_N376F) Effective for Utilization of Glucose/Xylose or Glucose/Galactose Mixture by Engineered Kluyveromyces marxianus

  • Kwon, Deok-Ho;Kim, Saet-Byeol;Park, Jae-Bum;Ha, Suk-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.12
    • /
    • pp.1944-1949
    • /
    • 2020
  • Mutant sugar transporter ScGAL2-N376F was overexpressed in Kluyveromyces marxianus for efficient utilization of xylose, which is one of the main components of cellulosic biomass. K. marxianus ScGal2_N376F, the ScGAL2-N376F-overexpressing strain, exhibited 47.04 g/l of xylose consumption and 26.55 g/l of xylitol production, as compared to the parental strain (24.68 g/l and 7.03 g/l, respectively) when xylose was used as the sole carbon source. When a mixture of glucose and xylose was used as the carbon source, xylose consumption and xylitol production rates were improved by 195% and 360%, respectively, by K. marxianus ScGal2_N376F. Moreover, the glucose consumption rate was improved by 27% as compared to that in the parental strain. Overexpression of both wild-type ScGAL2 and mutant ScGAL2-N376F showed 48% and 52% enhanced sugar consumption and ethanol production rates, respectively, when a mixture of glucose and galactose was used as the carbon source, which is the main component of marine biomass. As shown in this study, ScGAL2-N376F overexpression can be applied for the efficient production of biofuels or biochemicals from cellulosic or marine biomass.

FACTORS AFFECTING THE PRODUCTION OF SULFUR COMPOUNDS BY FUSOBACTERIUM NUCLEATUM (Fusobacterium nucleatum의 유황화합물 생성에 영향을 미치는 인자)

  • Oh, In-Gyun;Park, Eun-Hae;Oh, Jong-Suk;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.33-40
    • /
    • 2003
  • Fusobacterium nucleatum, one of the bacteria causing halitosis, produces the volatile sulfur compounds (VSC) such as $H_2S$ in the media containing sulfur components, and forms FeS by binding with iron component. The various factors of oral cavity affect the concentration of sulfur compounds produced by Fusobacterium nucleatum. In this study, the effect of nutrients and pH on the production of sulfur compounds by Fusobacterium nucleatum was studied with the following results. 1. The optical density of broth was increased to $0.817{\pm}0.032$ and $1.297{\pm}0.024$ by adding 1.0% sodium thiosulfate and 0.05% L-cysteine hydrochloride in the media, respectively. 2. Though the optical density of broth was $0.799{\pm}0.032$ by adding volatile sulfur compounds (VSC) only in the media, it was increased to $1.775{\pm}0.003$ and $1.648{\pm}0.022$ by adding xylitol combined with glucose and fructose, respectively. 3. The concentration of VSC was above 20,000 ppb in the media above pH 5.5. The optical density of broth was still high in the media with L-cysteine hydrochloride of higher concentration, being low in the media of lower pH. 4. The concentration of VSC was high when there was distilled water or saline solution on the media, and their amount was small. These results suggest that the production of sulfur compounds by Fusobacterium nucleatum was inhibited by xylitol and acid.

  • PDF

THE EFFECTS OF SUGARS ON THE EXPRESSION OF GTFB AND GTFC MRNA (Streptococcus mutans의 gtfB 및 gtfC 유전자 발현에 대한 당의 영향)

  • Chung, Hye-Jin;Kim, Shin;Chung, Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.2
    • /
    • pp.299-308
    • /
    • 2007
  • Insoluble glucan is the important component of oral biofilm, which is synthesized from sucrose through the action of glucosyltransferase (GTF) B and GTF C encoded by the gtfB and gtfC genes, respectively of Streptococcus mutans. In present study, the effects of various sugars on the mRNA expression of gtfB and gtfC of S. mutans Ingbritt were examined by fluorescent in situ hybridization (FISH). The mRNA of gtfB and gtfC was expressed normally in the BHI broth containing 1% and 5% sucrose. The mRNA expression was decreased by the addition of 10% of glucose, and 1%, 5% and 10% of fructose. Lactose had no great effect on the expression of gtfB and gtfC. 5% and 10% of xylitol greatly reduced the mRNA expression of gtfB and gtfC. Sorbitol slightly decreased the mRNA expression of gtfB and gtfC when compared to the control. In summary, mRNA expression of gtfB and gtfC was decreased by the addition of glucose, fructose, and xylitol.

  • PDF

농산 폐기물을 이용한 xylose, arabinose, cellulose 생산공정

  • Sin, Hyeon-Seung;Yu, Yeon-U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.286-298
    • /
    • 2005
  • 농산 폐자원으로부터 식품 및 의약품 소재로 쓰이는 xylose, arabinose, cellulose를 생산하였다. 농산 폐자원은 우리나라 실정에 적합한 볏짚과 옥수수 껍질을 선택하였으며, 공정수율은 xylose와 arabinose는 약 15$\sim$20%(w/w), cellulose 는 20%(w/w)로 나타났다. 폐자원을 활용하는 개발된 공정중에는 미생물 유전자 재조합 기술을 응용하여 고역가의 효소생산 system을 개발하여, 생산된 효소를 가수분해 공정 과정에 투입하여 경제성이 높고 친환경적인 기술로 확립하였다. 재조합 미생물과 xylose, arabinose 정제공정은 신뢰 높은 재연성을 나타냈으며 xylose 제조법과 xylitol 발효법은 package 형태로 기술 이전을 준비하고 있다.

  • PDF