• Title/Summary/Keyword: xylanase

Search Result 468, Processing Time 0.033 seconds

Biochemical Characterization of Agaricus bisporus Dikaryon Strains (양송이 이핵균주의 생화학적 특성 검정)

  • Kwon, Hyuk Woo;Kim, Jun Young;Min, Sung Hwan;Choi, Min Ah;Oh, Youn-Lee;Kong, Won-Sik;Kim, Seong Hwan
    • The Korean Journal of Mycology
    • /
    • v.42 no.1
    • /
    • pp.86-90
    • /
    • 2014
  • Button mushroom (Agaricus bisporus) strains from diverse origins were compared in this study to obtain basic information on their growth and biochemical properties that are helpful for breeding. Among 31 dikaryotic strains tested, most strains showed better mycelial growth on oatmeal agar than on MEA and PDA. Mycelia of the mushroom strains revealed ${\beta}$-glucosidase activity the most clearly among the seven extracellular enzymes tested. All the strains showed protease activity, but ${\beta}$-glucosidase activity was found in 27 strains and xylanase activity was found in 30 strains. The activity of avicelase, CM-cellulase, amylase, and pectinase was detected in less than 20 strains. These results implied that enzymatic characteristics could be used as a criterion of strain selection for breeding study.

Effect on Enzymatic Hydrolysis on the Physicochemical Properties of Persimmon Juice (효소분해가 감쥬스의 이화학적 특성에 미치는 영향)

  • Chun, Yun-Kee;Choi, Hee-Sook;Cha, Bo-Sook;Oh, Hoon-Il;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.198-203
    • /
    • 1997
  • The ground persimmon puree was treated with two kinds of commercial polysaccharide hydrolyzing enzymes (Viscozyme and Celluclast) in order to study their effects on the extraction yield, viscosity, color, titratable acidity and sugars. Hydrolysis with Viscozyme which has enzymatic activity of arabinase, cellulase, xylanase, hemicellulase and ${\beta}-glucanase$ significantly increased the extraction yield, L-value and reducing sugar and decreased in viscosity by treatment for 10 min at $50^{\circ}C$. The extraction yield of the juice was increased from 42.7% to 80% by Viscozyme while the Celluclast to 73.3%. On the other hand, the sensory properties of persimmon-like flavor, scarlet and orange color were greatly improved for the juice hydrolyzed with Viscozyme for 60 min.

  • PDF

Isolation and Characteristics of Composting-promoting-bacteria (부숙촉진 미생물 분리 및 분리균의 특성)

  • Lee, Young-Han;Park, Sang-Ryeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.6
    • /
    • pp.394-400
    • /
    • 2001
  • This experiment was conducted to determine the safety and feasibility of using compost-promoting-bacteria. Compost-promoting-bacteria was isolated from livestock compost containing sawdust. The isolated bacteria was identified as Bacillus subtilis LYH201 by the method of the composition of the fatty acid with MIDI system and Bergey's manual. This Bacillus subtilis LYH201 had the following characteristics : Gram-positive, straight rod ($0.5{\sim}0.7{\mu}m$ width, $2.5{\sim}3.0{\mu}m$ length), facultatively aerobic and product of xylanase, CMCase, catalase, oxidase, protease and $0.5{\sim}0.7{\mu}m$-amylase. Growth of Bacillus subtilis LYH201 at saccharose as carbon source(0.5%) was faster than other carbon source. Activity of cellulase. $0.5{\sim}0.7{\mu}m$-amylase and protease from Bacillus subtilis LYH201 after 24 hours at $50^{\circ}C$ by agar diffusion method was higher than that of low temperature. Optimum growth condition of Bacillus subtilis LYH201 was $50^{\circ}C$ and pH 6.

  • PDF

Virulence Reduction and Differing Regulation of Virulence Genes in rpf Mutants of Xanthomonas oryzae pv. oryzae

  • Jeong, Kyu-Sik;Lee, Seung-Eun;Han, Jong-Woo;Yang, Seung-Up;Lee, Byoung-Moo;Noh, Tae-Hwan;Cha, Jae-Soon
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • To define the functions of the rpf genes in Xanthomonas oryzae pv. oryzae (Xoo), which regulates pathogenicity factors in Xanthomonas campestris pv. campestris (Xcc), marker-exchange mutants of each rpf gene were generated. When the mutants were inoculated on a susceptible cultivar, the lesion lengths caused by the rpfB, rpfC, rpfF, and rpfG mutants were significantly smaller than those caused by the wild type, whereas those caused by the rpfA, rpfD, and rpfI mutants were not. Several virulence determinants, including extracellular polysaccharide (EPS) production, xylanase production, and motility, were significantly decreased in the four mutants. However, the cellulase activity in the mutants was unchanged. Complementation of the rpfB and rpfC mutations restored the virulence and the expression of the virulence determinants. Expression analysis of 14 virulence genes revealed that the expression of genes related to EPS production (gumG and gumM), LPS (xanA, xanB, wxoD, and wxoC), phytase (phyA), xylanase (xynB), lipase (lipA), and motility (pitA) were reduced significantly in the mutants rpfB, rpfC, rpfF, and rpfG. In contrast, the expression of genes related to cellulase (eglxob, clsA), cellobiosidase (cbsA), and iron metabolism (fur) was unchanged. The results of this study clearly show that rpfB, rpfC, rpfF, and rpfG are important for the virulence of Xoo KACC10859, and that virulence genes are regulated differently by the Rpfs.

Production of Cellulolytic Enzymes by Trichoderma harzianum FJ1 in Solid State Fermentation. (Trichoderma harzianum FJ1의 고체상태배양에 의한 섬유소분해효소의 생산)

  • 유승수;김경철;김성준
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.257-263
    • /
    • 2003
  • The cellulases production in solid state fermentation (SSF) of Trichoderma harzianum FJ1 with high cellulases productivity using cellulosic wastes was investigated. Physical and chemical conditions of the fermentation, such as moisture content, initial pH, and composition of mixed substrate (wine waste, rice straw, and soybean flour) on FPase (Filter paper activity) production were examined. The enzyme production was optimized in the conditions of moisture content of 70%, pH 5.0, 3$0^{\circ}C$, and 1:1:1 composition of mixed substrate containing wine waste, rice straw, and soybean flour. The highest activities of FPA, CMCase, Xylanase, $\beta$-glucosidase, and Avicelase in the optimized culture conditions were 15.2, 69.1, 83.9, 29.2, and 4.2 unit/g-SDW in 5 day cultivation, respectively. Economical and efficient production of cellulolytic enzymes by T harzianum FJ1 using cellulosic wastes in solid state fermentation will contribute to the biological saccharification of cellulosic wastes with enormous potential resource value in future.

Enzymatic Saccharification of Citrus Peel by Aspergillus sp. GF 015 (분리균 Aspergillus sp. GF015를 이용한 감귤과피(柑橘果皮)의 당화(糖化))

  • Park, Seok Kyu;Sung, Nack Kie;Chun, Hyo Kon
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.59-64
    • /
    • 1985
  • In order to utilize Citrus peel as fermentative substrate of microorganisms, enzymatic saccharification of Citrus peel by the crude enzyme of Aspergillus sp. GF 015 isolated and identified from nature was investigated. When the fungus was cultured at $27^{\circ}C$ for 3 days in wheat bran medium containing 0.6% $NH_4NO_3$ and 0.05% $KH_2PO_4$, the maximal production of the enzyme was observed. Optimal conditions for enzymatic reaction of crude enzyme were 15ml(97.5 unit)/g of enzyme solution to Citrus peel powder ratio, pH4.0, $45^{\circ}C$ of temperature and 12 hours of reaction time. As the result of saccharifying Citrus peel under optimum conditions, reducing sugar on the weight of dry matter was formed 60.2% and saccharifying rate was 76.3%. The sugar solution obtained were mainly composed of glucose, xylose and galacturonic acid. Hydrolyzing enzymes produced by Aspergillus sp. GF 015 were pectinase, cellulase and xylanase.

  • PDF

Improving Cellulase Production in Trichoderma koningii Through RNA Interference on ace1 Gene Expression

  • Wang, Shao-Wen;Xing, Miao;Liu, Gang;Yu, Shao-Wen;Wang, Juan;Tian, Sheng-Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1133-1140
    • /
    • 2012
  • Ribonucleic acid interference (RNAi) inhibits the expression of target genes in a sequence-specific manner, and shows potential for gene knockdown in filamentous fungi, in which the locus-specific gene knockout occurs in low frequency. In this study, the function of the repressor of cellulase expression I (ACEI) was verified in Trichoderma koningii (T. koningii) YC01 through RNAi, and ace1-silenced strains with improved cellulase productivity were obtained. An expression cassette that transcribed the interfering double-stranded RNA (dsRNA) of ace1 was constructed and transformed into T. koningii, and the transformants, in which the expression of ace1 was successfully silenced, were selected. As a result of the ace1 gene silencing, the expression levels of the main cellulase and xylanase genes were elevated, and the enhanced production of total proteins, cellulase, and xylanase was observed in the cultivation. In addition, the down-regulation of ace1 resulted in an increasing expression of xyr1, but no clear variation in the expression of cre1, which suggested that ACEI acted as a repressor of the xyr1 transcription, but was not involved in the regulation of the cre1 expression. The results of this work indicate that ace1 is a valid target gene for enhancing enzyme production in T. koningii, and RNAi is an appropriate tool for improving the properties of industrial fungi.

Purification and Characterization of Two Endoxylanases from an Alkaliphilic Bacillus halodurans C-1

  • Tachaapaikoon Chakrit;Lee Yun-Sik;Rantanakhanokchai Khanok;Pinitglang Surapong;Kyu Khin Lay;Rho Min-Suk;Lee Si-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.613-618
    • /
    • 2006
  • Two endoxylanases from an alkaliphilic bacterium, Bacillus halodurans C-1, were purified 3.8- and 7.9- fold with specific activities of 9.4 and 19.8U/mg protein, respectively. The molecular masses of both purified enzymes were 23 and 47 kDa, respectively, and 23 kDa xylanase I (Xyl I) exhibited an optimum pH at 7.0, whereas 47 kDa xylanase II (Xyl II) showed a broad pH range of 5.0 to 9.0. The temperature optima of both xylanases were $60^{\circ}C\;and\;70^{\circ}C$, respectively. Both were stable in the pH range of 6.0 to 9.0 and 5.0 to 10.0, respectively, and they were stable up to $60^{\circ}C\;and\;70^{\circ}C$, respectively. The $K_m\;and\;V_{max}$ of Xyl I were 4.33mg/ml and $63.5{\mu}mol/min/mg$, respectively, whereas Xyl II had a $K_m$ value of 0.30 mg/ml and $V_{max}$ of $210{\mu}mol/min/mg$. Both xylanases hydrolyzed xylans from birchwood, oat spelt, and larchwood. However, they showed different modes of action; a series of xylooligosaccharides larger than xylotriose were released as the major products by Xyl I, whereas xylobiose and xylotriose were the main products by Xyl II. The maximum synergistic action of the two enzymes on hydrolysis of xylan was 2.16 with the ratio of Xyl I to Xyl II at 1:9.

Rice Straw-Decomposing Fungi and Their Cellulolytic and Xylanolytic Enzymes

  • Lee, Sang-Joon;Jang, Yeong-Seon;Lee, Young-Min;Lee, Jae-Jung;Lee, Han-Byul;Kim, Gyu-Hyeok;Kim, Jae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1322-1329
    • /
    • 2011
  • Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulase-producing fungi were selected in a first screening step followed by a second step to isolate the best enzyme-producer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-${\beta}$-1,4 glucanase (EG), and endo-${\beta}$-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.