• Title/Summary/Keyword: xylan metabolism

Search Result 7, Processing Time 0.022 seconds

Manipulation of Mini-Yeast Artificial Chromosome Containing Xylan Metabolism Related Genes and Mitotic Stability Analysis in Yeast (Xylan 대사유전자를가진미니효모인공염색체의가공및 Mitotic Stability 분석)

  • Da-In Kang;Yeon-Hee Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.436-440
    • /
    • 2022
  • In this study, yeast artificial chromosome Insert (YAC) harboring genes which related xylan metabolism was constructed by using chromosome manipulation technique. For efficient chromosome manipulation, each splitting fragment (DNA module) required for splitting process was prepared and these DNA modules were transformed into Saccharomyces cerevisiae strain YKY164. By two-rounds chromosome splitting, yeast chromosome VII (1,124 kb) was split 887 kb-YAC, 45 kb-mini YAC and 198 kb-YAC and YKY183 strain containing 18 chromosomes was constructed. Splitting efficiency for chromosome manipulation was 50- 78% and expression level of foreign genes on 45 kb-mini YAC and enzyme activity were indistinguishable from that of the YKY164 strain. Furthermore, xylan-degraded products by recombinant enzymes were confirmed and mini-yeast artificial chromosome maintained stable mitotic stability without chromosome loss during 160 generations.

Characteristics of Xylan Degradation and HPLC Analysis of Hydrolyzed Xylans by Deinococcus geothermalis (Deinococcus geothermalis의 Xylan 최적 분해조건 및 분해산물 분석)

  • Im, Seong-Hun;Joe, Min-Ho;Jung, Sun-Wook;Lim, Sang-Yong;Song, Hyun-Pa;Kim, Dong-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.308-312
    • /
    • 2010
  • Deinococcus geothermalis is a moderate thermophillic radiation resistant bacterium producing greater abundance of sugar metabolism enzymes than other Deinococcus species. In this study, optimal condition for xylanolytic activity of D. geothermalis was determined and xylooligosaccharides from oat spelt, beechwood, and birchwood xylan hydrolysates by this organism were analyzed through HPLC. Reducing sugar yield was increased in the order of beechwood, birchwood, and oat spelt xylan. D. geothermalis displayed maximal xylanolytic activity at $40^{\circ}C$ and pH 8.0. Magnesium ion increased xylanolytic activity upto 7.5 fold. Six kinds of xylooligosaccharides (xylose, xylobios, xylotriose, xylotetraose, xylopentaose, and xylohexalose) were detected from beechwood and birchwood xylan reaction products. Among them, xylose was the major product. However, only three kinds of xylooligosaccharides (xylose, xylopentaose, and xylohexalose) were clearly detected from oat spelt xylan. Gamma-ray (50 kGy) treatment of beechwood xylan, birchwood xylan and oat spelt xylan increased xylanolytic activity of D. geothermalis. The results indicate that D. geothermalis and pretreatment of radiation is useful for xylooligosaccharides production.

Enzymatic characterization of Paenibacillus amylolyticus xylanases GH10 and GH30 for xylan hydrolysis (Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성)

  • Nam, Gyeong-Hwa;Jang, Myoung-Uoon;Kim, Min-Jeong;Lee, Jung-Min;Lee, Min-Jae;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.463-470
    • /
    • 2016
  • The enzymatic degradation of xylans is the most versatile way to obtain the high value-added functional compounds or the fermentable sugars for renewable energy. The endo-${\beta}$-xylanases are the major enzymes which hydrolyze the internal ${\beta}$-1,4-linkages of xylan backbones to produce the mixtures of xylooligosaccharides including xylobiose and xylotriose. Among them, glucuronoxylanase GH30 can exclusively hydrolyze the internal ${\beta}$-1,4-linkages of xylans decorated with methylglucuronic acid branches. In the present study, two xylanolytic enzyme (PaXN_10 and PaGuXN_30) genes were cloned from Paenibacillus amylolyticus KCTC 3005, and expressed in Escherichia coli, respectively. PaXN_10 (38.7 kDa) belongs to the endo-${\beta}$-xylanases GH10 family, while PaGuXN_30 (58.5 kDa) is a member of glucuronoxylanase GH30. They share the same optimal reaction conditions at $50^{\circ}C$ and pH 7.0. Enzymatic characterization proposed that P. amylolyticus can utilize the hardwood glucuronoarabinoxylans via the cooperative actions of xylanases GH10 and GH30. The extracellular PaGuXN_30 is secreted into the medium and hydrolyzes glucuronoarabinoxylans to release a series of aldouronic acid mixtures with a methylglucuronic acid branch. The resultant products being transported into the microbial cell are successively degraded into the smaller xylooligosaccharides by the intracellular PaXN_10, which will be utilized for the cellular metabolism.

Simultaneous and Sequential Integration by Cre/loxP Site-Specific Recombination in Saccharomyces cerevisiae

  • Choi, Ho-Jung;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.826-830
    • /
    • 2018
  • A Cre/loxP-${\delta}$-integration system was developed to allow sequential and simultaneous integration of a multiple gene expression cassette in Saccharomyces cerevisiae. To allow repeated integrations, the reusable Candida glabrata MARKER (CgMARKER) carrying loxP sequences was used, and the integrated CgMARKER was efficiently removed by inducing Cre recombinase. The XYLP and XYLB genes encoding endoxylanase and ${\beta}$-xylosidase, respectively, were used as model genes for xylan metabolism in this system, and the copy number of these genes was increased to 15.8 and 16.9 copies/cell, respectively, by repeated integration. This integration system is a promising approach for the easy construction of yeast strains with enhanced metabolic pathways through multicopy gene expression.

Analysis of Functional Genes in Carbohydrate Metabolic Pathway of Anaerobic Rumen Fungus Neocallimastix frontalis PMA02

  • Kwon, Mi;Song, Jaeyong;Ha, Jong K.;Park, Hong-Seog;Chang, Jongsoo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1555-1565
    • /
    • 2009
  • Anaerobic rumen fungi have been regarded as good genetic resources for enzyme production which might be useful for feed supplements, bio-energy production, bio-remediation and other industrial purposes. In this study, an expressed sequence tag (EST) library of the rumen anaerobic fungus Neocallimastix frontalis was constructed and functional genes from the EST library were analyzed to elucidate carbohydrate metabolism of anaerobic fungi. From 10,080 acquired clones, 9,569 clones with average size of 628 bp were selected for analysis. After the assembling process, 1,410 contigs were assembled and 1,369 sequences remained as singletons. 1,192 sequences were matched with proteins in the public data base with known function and 693 of them were matched with proteins isolated from fungi. One hundred and fifty four sequences were classified as genes related with biological process and 328 sequences were classified as genes related with cellular components. Most of the enzymes in the pathway of glucose metabolism were successfully isolated via construction of 10,080 ESTs. Four kinds of hemi-cellulase were isolated such as mannanase, xylose isomerase, xylan esterase, and xylanase. Five $\beta$-glucosidases with at least three different conserved domain structures were isolated. Ten cellulases with at least five different conserved domain structures were isolated. This is the first solid data supporting the expression of a multiple enzyme system in the fungus N. frontalis for polysaccharide hydrolysis.

Comparison of Methods for Stable Simultaneous Expression of Various Heterologous Genes in Saccharomyces cerevisiae (출아효모에서 다양한 이종 유전자의 안정적 동시발현을 위한 방법의 비교)

  • Jung, Heo-Myung;Kim, Yeon-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.667-672
    • /
    • 2019
  • We compared two integration systems for stable expression of heterologous genes in Saccharomyces cerevisiae. A Candida glabrata-derived gene was used as the selective marker for the Cre/loxP system, and XYLP, XYLB, GRE3, and XYL2 genes were used as model heterologous genes and ligated into the universal pRS-CMT vector. The resulting pRS-XylP, pRS-XylB, pRS-Gre3, and pRS-Xyl2 plasmids were sequentially integrated into yeast chromosome VII by four integration processes (marker rescue and gene integration). The four introduced genes were successfully expressed. Further, the pRS-PBG2 plasmid harboring expression cassettes for the four genes was constructed for one-step integration. The four genes that were introduced were stably maintained as a gene cluster and were simultaneously expressed. The one-step integration was more effective for the simultaneous integration and expression of the four genes related to xylan/xylose metabolism. This method will enable the generation of a useful biosystem through appropriate use of gene integration methods.

System for Repeated Integration of Various Gene Expression Cassettes in the Yeast Chromosome (효모염색체내에 다양한 유전자발현 cassette의 반복적 integration을 위한 system 구축)

  • Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1277-1284
    • /
    • 2018
  • In this study, a repeated yeast integrative plasmid (R-YIp) harboring Cre/loxP system was constructed to integrate various gene expression cassettes into the yeast chromosome. The R-YIp system contains a reusable selective marker (CgTRP1), loxP sequence, and target sequence for integration. Therefore, many gene expression cassettes can be integrated into the same position of the same yeast chromosome. In the present study, several model enzymes involving xylan/xylose metabolism were examined, including endoxylanase (XYLP), ${\beta}$-xylosidase (XYLB), xylose reductase (GRE3) and xylitol dehydrogenase (XYL2). Efficient expression of these genes was obtained using two promoters (GAL10p and ADH1p) and various plasmids (pGMF-GENE and pAMF-GENE plasmids) were constructed. The XYLP, XYLB, GRE3, and XYL2 genes were efficiently expressed under the control of the GAL10 promoter. Subsequently, R-YIps containing the GAL10p-GENE-GAL7t cassette were constructed, resulting in pRS-XylP, pRS-XylB, pRS-Gre3, and pRS-Xyl2 plasmids. These plasmids were sequentially integrated into chromosome VII of a Saccharomyces cerevisiae strain by repeated gene integration and selective marker rescue. These genes were integrated by the R-YIp system and were stably expressed in the yeast transformants to produce active recombinant enzymes. Therefore, we expect that the R-YIp system will be able to overcome current limitations of the host cells and allow selective marker selection for the integration of various genes into the yeast chromosome.