Browse > Article

Characteristics of Xylan Degradation and HPLC Analysis of Hydrolyzed Xylans by Deinococcus geothermalis  

Im, Seong-Hun (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Joe, Min-Ho (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Jung, Sun-Wook (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Lim, Sang-Yong (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Song, Hyun-Pa (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Kim, Dong-Ho (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Microbiology / v.46, no.3, 2010 , pp. 308-312 More about this Journal
Abstract
Deinococcus geothermalis is a moderate thermophillic radiation resistant bacterium producing greater abundance of sugar metabolism enzymes than other Deinococcus species. In this study, optimal condition for xylanolytic activity of D. geothermalis was determined and xylooligosaccharides from oat spelt, beechwood, and birchwood xylan hydrolysates by this organism were analyzed through HPLC. Reducing sugar yield was increased in the order of beechwood, birchwood, and oat spelt xylan. D. geothermalis displayed maximal xylanolytic activity at $40^{\circ}C$ and pH 8.0. Magnesium ion increased xylanolytic activity upto 7.5 fold. Six kinds of xylooligosaccharides (xylose, xylobios, xylotriose, xylotetraose, xylopentaose, and xylohexalose) were detected from beechwood and birchwood xylan reaction products. Among them, xylose was the major product. However, only three kinds of xylooligosaccharides (xylose, xylopentaose, and xylohexalose) were clearly detected from oat spelt xylan. Gamma-ray (50 kGy) treatment of beechwood xylan, birchwood xylan and oat spelt xylan increased xylanolytic activity of D. geothermalis. The results indicate that D. geothermalis and pretreatment of radiation is useful for xylooligosaccharides production.
Keywords
D. geothermalis; gamma radiation; xylan; xylooligosaccharides;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Beg, Q.K., M. Kapoor, L. Mahajan, and G.S. Hoondal. 2001. Microbial xylanase and their industrial application: a review. Appl. Microbiol. Biotechnol. 56, 326-338.   DOI
2 Van Wyk, J.P.H., A.M. Mogale, and T.A. Seseng. 2001. Bioconversion of wastepaper to sugars by cellulase from Aspergillus niger, Trichoderma viride and Penicillium funiculosum. J. Solid Waste Technol. Manag. 27, 82-86.
3 Wong, K.K.Y., L.U.L. Tan, and J.N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganisms; function and applications. Microbiol. Rev. 52, 305-317.
4 Yang, C., Z. Shen, G. Yu, and J. Wang. 2008. Effect and aftereffect of r radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour. Technol. 99, 6240-6245.   DOI
5 Zhu, S., Y. Wu, Z. Yu, X. Zhang, H. Li, and M. Gao. 2006. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour. Technol. 97, 1964-1968.   DOI   ScienceOn
6 Tassinari, T.H., C.F. Macy, and L.A. Spano. 1982. Technology advances for continuous compression milling pretreatment of lignocellulosics for enzymatic hydrolysis. Biotechnol. Bioeng. 24, 1495-1505.   DOI   ScienceOn
7 Siedenberg, D., S.R. Gerlach, K. Schugerl, M.L.F. Giuseppin, and J. Hunik. 1998. Production of xylanase by Aspergillus awamorion synthetic medium in shake flask cultures. Process Biochem. 33, 429-433.   DOI   ScienceOn
8 Silverstein, R.A., Y. Chen, R.R. Sharma-Shivappa, M.D. Boyette, and J. Osborne. 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 98, 3000-3011.   DOI   ScienceOn
9 Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39-67.   DOI   ScienceOn
10 Tenkanen, H., J. Plus, and K. Poutanen. 1992. Two major xylanases of Trichoderma reesei. Enzyme Microbiol. Technol. 14, 566-574.   DOI   ScienceOn
11 Kenealy, R.W. and T.W. Jevries. 2003. Enzyme processes for pulp and paper: a review of recent developments in wood deterioration and preservation. American Chem. Soc. Chapter 12, 210-239.
12 Rubin, E.M. 2008. Genomics of cellulosic biofuels. Rev. Nature 454, 841-845.   DOI   ScienceOn
13 Gupta, S., R.C. Kuhad, B. Bhushan, and G.S. Hoondal. 2001. Improved xylanase production from a haloalkalophilic Staphylococcus sp. SG-13 using inexpensive agricultural residues. World J. Microbiol. Biotechnol. 17, 5-8.   DOI   ScienceOn
14 Hendriks, A.T.W.M. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of ligonocellulosic biomass. Rev. Bioresource Technol. 100, 10-18.   DOI   ScienceOn
15 Esteghlalian, A., A.G. Hashimoto, J.J. Fenske, and M.H. Penner. 1997. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour. Technol. 21, 129-136.
16 Kim, S. and M.T. Holtzapple. 2005. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 1994-2006.   DOI   ScienceOn
17 Bhat, M.K. and S. Bhat. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15, 583-620.   DOI   ScienceOn
18 Chosdu, R., N. Hilmy, E.T.B. Erizal, and B. Abbas. 1993. Radiation and chemical pretreatment of cellulosic waste. Radiation Physics Chemistry 42, 695-698.   DOI   ScienceOn
19 Na, J.B. and J.S. Kim. 2008. The optimum condition of SSF to ethanol production from starch biomass. Kor. Chem. Eng. Res. 46, 858-862.
20 Bajpai, P. 1997. Microbial xylanolytic enzyme system: properties and applications. Adv. Appl. Microbiol. 43, 141-194.   DOI
21 Makarova, K.S., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A.V. Min Zhai, A.L. Alex Copel, E.K. Miriam Land, K.M. Samuel Pitluck, P.M. Richardson, C.D. Thomas Brettin, and et al. 2007. Deinococcus geothermalis: The Pool of extreme radiation resistance genes shrinks. PLoS ONE 2(9), e955.   DOI
22 Kasana, R.C., R. Salwan, H. Dhar, S. Dutt, and A. Gulati. 2008. A rapid and easy method for the detection of micobial cellulases on agar plates using Gram's Iodine. Curr. Microbiol. 57, 503-507.   DOI   ScienceOn
23 Kim, J.Y. 2006. Nucleotide sequence of cellulolytic xylanase gene (bglBC2) from Bacillus circulans. Kor. J. Microbiol. 42, 67-72.   과학기술학회마을
24 Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411-456.   DOI   ScienceOn
25 Kumakura, M. and I. Kaetsu. 1983. Radiation and chemical pretreatment of chaff and its effect on enzymatic hydrolysis. Process Biochem. 18, 14-16.
26 McMillan, J.D. 1994. Pretreatment of lignocellulosic biomass in enzymatic conversion of biomass for fuels production. American Chem. Soc. Chapter 15, 292-324.