Characteristics of Xylan Degradation and HPLC Analysis of Hydrolyzed Xylans by Deinococcus geothermalis

Deinococcus geothermalis의 Xylan 최적 분해조건 및 분해산물 분석

  • Im, Seong-Hun (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Joe, Min-Ho (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Jung, Sun-Wook (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Lim, Sang-Yong (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Song, Hyun-Pa (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Ho (Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute)
  • 임성훈 (한국원자력연구원 방사선생명공학연구부) ;
  • 조민호 (한국원자력연구원 방사선생명공학연구부) ;
  • 정선욱 (한국원자력연구원 방사선생명공학연구부) ;
  • 임상용 (한국원자력연구원 방사선생명공학연구부) ;
  • 송현파 (한국원자력연구원 방사선생명공학연구부) ;
  • 김동호 (한국원자력연구원 방사선생명공학연구부)
  • Received : 2010.08.04
  • Accepted : 2010.09.28
  • Published : 2010.09.30

Abstract

Deinococcus geothermalis is a moderate thermophillic radiation resistant bacterium producing greater abundance of sugar metabolism enzymes than other Deinococcus species. In this study, optimal condition for xylanolytic activity of D. geothermalis was determined and xylooligosaccharides from oat spelt, beechwood, and birchwood xylan hydrolysates by this organism were analyzed through HPLC. Reducing sugar yield was increased in the order of beechwood, birchwood, and oat spelt xylan. D. geothermalis displayed maximal xylanolytic activity at $40^{\circ}C$ and pH 8.0. Magnesium ion increased xylanolytic activity upto 7.5 fold. Six kinds of xylooligosaccharides (xylose, xylobios, xylotriose, xylotetraose, xylopentaose, and xylohexalose) were detected from beechwood and birchwood xylan reaction products. Among them, xylose was the major product. However, only three kinds of xylooligosaccharides (xylose, xylopentaose, and xylohexalose) were clearly detected from oat spelt xylan. Gamma-ray (50 kGy) treatment of beechwood xylan, birchwood xylan and oat spelt xylan increased xylanolytic activity of D. geothermalis. The results indicate that D. geothermalis and pretreatment of radiation is useful for xylooligosaccharides production.

대표적인 중호열성 방사선저항성 미생물인 Deinococcus geothermalis에는 다른 Deinococcus 속과 비교해 당대사 작용에 관여하는 유전자가 풍부하게 존재하는 특징이 있다. 본 연구에서는 D. geothermalis를 이용하여 xylan의 최적 분해조건을 확인하였고, beechwood xylan, birchwood xylan 및 oat spelt xylan의 최종 분해산물을 HPLC를 이용하여 분석하였다. 기질의 종류에 따른 당화율을 비교한 결과 beechwood xylan, birchwood xylan 그리고 oat spelt xylan 순서로 당화율이 높게 나타났다. D. geothermalis를 이용한 xylan의 최적 분해조건인 $40^{\circ}C$, pH 8.0 그리고 마그네슘 이온을 첨가하였을 때 당화율이 7.5배 증가하였다. Beechwood xylan과 birchwood xylan의 최종 분해산물은 xylose, xylobios, xylotriose, xylotetraose, xylopentaose, 그리고 xylohexalose였으며, xylose의 함량이 가장 높았다. 또한 oat seplt xylan의 최종 분해산물은 xylose, xylopentaose 그리고 xylohexalose가 생성되었다. Xylan의 효율적인 당화를 위하여 전처리 방법으로서 방사선조사를 하였고, 방사선조사 후 D. geothermalis에 의한 beechwood xylan, birchwood xylan 그리고 oat spelt xylan의 당화율이 증가하였다. 본 연구를 통하여 D. geothermalis 및 방사선을 이용한 전처리 방법이 xylooligosaccharides를 생산하는데 유용함을 확인하였다.

Keywords

References

  1. Bajpai, P. 1997. Microbial xylanolytic enzyme system: properties and applications. Adv. Appl. Microbiol. 43, 141-194. https://doi.org/10.1016/S0065-2164(08)70225-9
  2. Beg, Q.K., M. Kapoor, L. Mahajan, and G.S. Hoondal. 2001. Microbial xylanase and their industrial application: a review. Appl. Microbiol. Biotechnol. 56, 326-338. https://doi.org/10.1007/s002530100704
  3. Bhat, M.K. and S. Bhat. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 15, 583-620. https://doi.org/10.1016/S0734-9750(97)00006-2
  4. Chosdu, R., N. Hilmy, E.T.B. Erizal, and B. Abbas. 1993. Radiation and chemical pretreatment of cellulosic waste. Radiation Physics Chemistry 42, 695-698. https://doi.org/10.1016/0969-806X(93)90354-W
  5. Esteghlalian, A., A.G. Hashimoto, J.J. Fenske, and M.H. Penner. 1997. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour. Technol. 21, 129-136.
  6. Gupta, S., R.C. Kuhad, B. Bhushan, and G.S. Hoondal. 2001. Improved xylanase production from a haloalkalophilic Staphylococcus sp. SG-13 using inexpensive agricultural residues. World J. Microbiol. Biotechnol. 17, 5-8. https://doi.org/10.1023/A:1016691205518
  7. Hendriks, A.T.W.M. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of ligonocellulosic biomass. Rev. Bioresource Technol. 100, 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  8. Kenealy, R.W. and T.W. Jevries. 2003. Enzyme processes for pulp and paper: a review of recent developments in wood deterioration and preservation. American Chem. Soc. Chapter 12, 210-239.
  9. Kim, S. and M.T. Holtzapple. 2005. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour. Technol. 96, 1994-2006. https://doi.org/10.1016/j.biortech.2005.01.014
  10. Na, J.B. and J.S. Kim. 2008. The optimum condition of SSF to ethanol production from starch biomass. Kor. Chem. Eng. Res. 46, 858-862.
  11. Makarova, K.S., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A.V. Min Zhai, A.L. Alex Copel, E.K. Miriam Land, K.M. Samuel Pitluck, P.M. Richardson, C.D. Thomas Brettin, and et al. 2007. Deinococcus geothermalis: The Pool of extreme radiation resistance genes shrinks. PLoS ONE 2(9), e955. https://doi.org/10.1371/journal.pone.0000955
  12. Kasana, R.C., R. Salwan, H. Dhar, S. Dutt, and A. Gulati. 2008. A rapid and easy method for the detection of micobial cellulases on agar plates using Gram's Iodine. Curr. Microbiol. 57, 503-507. https://doi.org/10.1007/s00284-008-9276-8
  13. Kim, J.Y. 2006. Nucleotide sequence of cellulolytic xylanase gene (bglBC2) from Bacillus circulans. Kor. J. Microbiol. 42, 67-72.
  14. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23, 411-456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  15. Kumakura, M. and I. Kaetsu. 1983. Radiation and chemical pretreatment of chaff and its effect on enzymatic hydrolysis. Process Biochem. 18, 14-16.
  16. McMillan, J.D. 1994. Pretreatment of lignocellulosic biomass in enzymatic conversion of biomass for fuels production. American Chem. Soc. Chapter 15, 292-324.
  17. Rubin, E.M. 2008. Genomics of cellulosic biofuels. Rev. Nature 454, 841-845. https://doi.org/10.1038/nature07190
  18. Siedenberg, D., S.R. Gerlach, K. Schugerl, M.L.F. Giuseppin, and J. Hunik. 1998. Production of xylanase by Aspergillus awamorion synthetic medium in shake flask cultures. Process Biochem. 33, 429-433. https://doi.org/10.1016/S0032-9592(97)00090-3
  19. Silverstein, R.A., Y. Chen, R.R. Sharma-Shivappa, M.D. Boyette, and J. Osborne. 2007. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour. Technol. 98, 3000-3011. https://doi.org/10.1016/j.biortech.2006.10.022
  20. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39-67. https://doi.org/10.3109/07388559709146606
  21. Tassinari, T.H., C.F. Macy, and L.A. Spano. 1982. Technology advances for continuous compression milling pretreatment of lignocellulosics for enzymatic hydrolysis. Biotechnol. Bioeng. 24, 1495-1505. https://doi.org/10.1002/bit.260240704
  22. Tenkanen, H., J. Plus, and K. Poutanen. 1992. Two major xylanases of Trichoderma reesei. Enzyme Microbiol. Technol. 14, 566-574. https://doi.org/10.1016/0141-0229(92)90128-B
  23. Van Wyk, J.P.H., A.M. Mogale, and T.A. Seseng. 2001. Bioconversion of wastepaper to sugars by cellulase from Aspergillus niger, Trichoderma viride and Penicillium funiculosum. J. Solid Waste Technol. Manag. 27, 82-86.
  24. Wong, K.K.Y., L.U.L. Tan, and J.N. Saddler. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganisms; function and applications. Microbiol. Rev. 52, 305-317.
  25. Yang, C., Z. Shen, G. Yu, and J. Wang. 2008. Effect and aftereffect of r radiation pretreatment on enzymatic hydrolysis of wheat straw. Bioresour. Technol. 99, 6240-6245. https://doi.org/10.1016/j.biortech.2007.12.008
  26. Zhu, S., Y. Wu, Z. Yu, X. Zhang, H. Li, and M. Gao. 2006. The effect of microwave irradiation on enzymatic hydrolysis of rice straw. Bioresour. Technol. 97, 1964-1968. https://doi.org/10.1016/j.biortech.2005.08.008