• Title/Summary/Keyword: xenograft tumor

Search Result 184, Processing Time 0.025 seconds

Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

  • You, Mi-Kyoung;Kim, Min-Sook;Jeong, Kyu-Shik;Kim, Eun;Kim, Yong-Jae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 2016
  • BACKGROUND/OBJECFTIVES: The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS: Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS: Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION: Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion.

Synthesis of a PEGylated tracer for radioiodination and evaluation of potential in tumor targeting

  • Abhinav Bhise;Sushil K Dwivedi;Kiwoong Lee;Jeong Eun Lim;Subramani Rajkumar;Woonghee Lee;Seong Hwan Cho;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.79-84
    • /
    • 2021
  • Radiopharmaceuticals are important for tumor diagnosis and therapy. To deliver a radiotracer at the desired target excluding non-targeted tissues is difficult The development of a targeted tracer that has a good clearance profile while maintaining high biostability and biocompatibility is key to optimizing its biodistribution and transport across biological barriers. Improving the hydrophilicity of radiotracers by PEGylation can reduce serum binding, allowing the tracer to circulate without retention and reducing its affinity for non-targeted tissues. In this study, we synthesized a new benzamido tracer (SnBz-PEG36) with the introduction of a low molecular weight polyethylene glycol unit (PEG36, ~2,100 Da). The tumor targeting efficiency and biodistribution of [131I]-Bz-PEG36 or radiotracer-loaded liposomes were evaluated after their administration to normal mice or mouse tumor models including CT26 (xenograft) and 4T1 (xenograft and orthotopic). Most of the radiotracer was cleared out rapidly (1-24 h post-administration) through the kidney and there was little tumor uptake.

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway

  • Ko, Eul-Bee;Jang, Yin-Gi;Kim, Cho-Won;Go, Ryeo-Eun;Lee, Hong Kyu;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.151-161
    • /
    • 2022
  • This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

The Anti-tumor Effect of Soonkiwhajungtang with Doxorubicin in MKN-45 Conclusion (순기화중탕과 Doxorubicin의 병용이 MKN-45의 항암효과에 미치는 영향)

  • 신민규;변준석
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.98-109
    • /
    • 2004
  • Objectives : To evaluate the anti-tumor and synergic effect of Soonkiwhajungtang with doxorubicin. Methods : The inhibitory concentration (IC), $IC_{50}$ and $IC_{90}$ of single use of doxorubicin and Soonkiwhajungtang with their concomitant treatment against MKN-45 (human stomach carcinoma) cell line were observed using MTT (microculture tetrazolium test) assay. In addition, their anti-tumor effects were also observed in xenograft nude mice models against the MKN-45 cell line. Results : Soonkiwhajungtang has only minimal direct anti-tumor effect against MKN-45 cell line but it reduced general depressed signs induced by implantation of the tumor cell lines and increased the total WBC and lymphocyte numbers. Conclusions : It is considered or expected that Soonkiwhajungtang extract reduces the critical toxicity of doxorubicin and has favorable synergic anti-tumor effect when administered concomitantly with doxorubicin.

  • PDF

The Anti-tumor Effect of Bojungikkeehapdaechilkitang with Doxorubicin in Colon-26 (보중익기합대칠기탕과 Doxorubicin의 병용이 Colon-26의 항암효과에 미치는 영향)

  • 이윤희;변준석
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.9-21
    • /
    • 2004
  • Objectives : To evaluate the anti-tumor and synergic effect of Bojungikkeehapdaechilki-tang (BJDC) with doxorubicin. Methods : The inhibitory concentration (IC), $IC_{50}{\;}and{\;}IC_{90}$ of single use of doxorubicin and BIDC with their concomitant treatment against Colon-26 (murine rectum carcinoma) cell line were observed using MTT (microculture tetrazolium test) assay. In addition, their anti-tumor effects were also observed in xenograft nude mice models against Colon-26 cell line. Results : BJDC had only minimal direct anti-tumor effect against Colon-26 cell line but it reduced general depressed signs induced by implantation of the tumor cell lines and increased the total WBC and lymphocyte numbers. Conclusions : It is considered or expected that BJDC extract is reducing the critical toxicity of doxorubicin and has favorable synergic anti-tumor effect when administered conconitently with doxorubicin.

  • PDF

Inhibitory Effect of D-chiro-inositol on Both Growth and Recurrence of Breast Tumor from MDA-MB-231 Cancer Cells

  • Kim, Yoon-seob;Park, Ji-sung;Kim, Minji;Hwang, Bang Yeon;Lee, Chong-kil;Song, Sukgil
    • Natural Product Sciences
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • D-chiro-inositol (DCI) is a secondary messenger in insulin signal transduction. It is produced in vivo from myo-inositol via action of epimerase. In this study, we evaluated antitumor activity of DCI against human breast cancer both in vitro and in vivo. In order to determine the inhibitory effects of DCI on growth of human breast cancer cells (MDA-MB-231), two different assessment methods were implemented: MTT assay and mouse xenograft assay. MTT assay demonstrated downturn in cell proliferation by DCI treatment (1, 5, 10, 20 and 40 mM) groups by 18.3% (p < 0.05), 17.2% (p < 0.05), 17.5% (p < 0.05), 18.4% (p < 0.05), and 24.9% (p < 0.01), respectively. Also, inhibition of tumor growth was investigated in mouse xenograft model. DCI was administered orally at the dose of 500 mg/kg and 1000 mg/kg body weight to treat nude mouse for 45 consecutive days. On the 45th day, tumor growth of DCI (500 mg/kg and 1000 mg/kg) groups was suppressed by 22.1% and 67.6% as mean tumor volumes were $9313.8{\pm}474.1mm^3$ and $3879.1{\pm}1044.1mm^3$, respectively. Furthermore, breast cancer stem cell (CSC) phenotype ($CD44^+/C24^-$) was measured using flow cytometry. On the 46th day, CSC ratios of DCI (500 mg/kg) and co-treatment with doxorubicin (4 mg/kg) and DCI (500 mg/kg) group decreased by 24.7% and 53.9% (p < 0.01), respectively. Finally, from tumor recurrence assay, delay of 5 days in the co-treatment group compared to doxorubicin (4 mg/kg) alone group was observed. Based on these findings, we propose that DCI holds potential as an anti-cancer drug for treatment of breast cancer.

20 (S)-ginsenoside Rh2 inhibits colorectal cancer cell growth by suppressing the Axl signaling pathway in vitro and in vivo

  • Zhang, Haibo;Yi, Jun-Koo;Huang, Hai;Park, Sijun;Kwon, Wookbong;Kim, Eungyung;Jang, Soyoung;Kim, Si-Yong;Choi, Seong-kyoon;Yoon, Duhak;Kim, Sung-Hyun;Liu, Kangdong;Dong, Zigang;Ryoo, Zae Young;Kim, Myoung Ok
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.396-407
    • /
    • 2022
  • Background: Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods: Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results: G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion: Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.

Targeting Renal Cell Carcinoma with Gambogic Acid in Combination with Sunitinib in Vitro and in Vivo

  • Jiang, Xiao-Liang;Zhang, Yao;Luo, Chun-Li;Wu, Xiao-Hou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6463-6468
    • /
    • 2012
  • Purpose: To evaluated the effect of the gambogic acid (GA), one of the effective components of Garcinia, in combination with a new multi-targeted oral medication, sunitinib (SU) on renal cancer cell proliferation in vitro and on tumor growth in vivo. Methods: After treatment with GA or SU, either alone or in combination, MTT and FACS analysis were used to examine cell viability and cycle distribution of the renal carcinoma cell lines 786-0 and Caki-1. Western blotting was employed to examine the expression of proteins related to the cell cycle and vascular formation. Furthermore, a xenograft model was applied to study the antitumor efficacy of SU or GA alone or in combination, with immunohistochemistry to detect expression of proteins related to xenograft growth and angiogenesis. Western blotting was used to examine NF-${\kappa}B$ signaling pathway elements in xenografts. Results: Treatment of 786-0 and Caki-1 cells with GA or SU resulted in decreased tumor cell proliferation, especially with joint use. Cells accumulated more strongly in the sub-G1 phase after joint treatment with GA and SU than treatment of GA and SU alone. Western blotting arrays showed 1 protein significantly upregulated, 2 proteins downregulated, and 2 proteins unchanged. Moreover, combined use of GA and SU inhibited the growth and angiogenesis of xenografts generated from Caki-1 significantly. Immunohistochemistry arrays showed downregulation of the expression of proteins promoting xenograft growth and angiogenesis, and Western blotting showed inhibition of the NF-${\kappa}B$ signaling pathway after treatment by GA alone and in combination with SU in xenografts. Conclusions: Our results show that the joint use of GA and SU can provide greater antitumor efficacy compared to either drug alone and thus may offer a new treatment strategy for renal cell carcinoma.

Xenografted Tumorigenesis in the oral vestibule of nude mice by Snail transfection: Histological and immunohistochemical study

  • Kim, Moon-Key;Lee, Eun-Ha;Kim, Jin;Yook, Jong-In;Cha, In-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.4
    • /
    • pp.199-204
    • /
    • 2009
  • Purpose: The purpose of this study is to investigate the epithelial-mesenchymal transition (EMT) induced by Snail transcription factor and Snail-transfected in vivo tumors with histopathological features. Materials and methods: We induced in vivo xenografted tumorigenesis in the oral vestibules of nude mice by a Snail transfected HaCaT cell line and investigated morphological and immunohistochemical features in Snail expressive tumors. Results: We identified tumor masses in 14 out of 15 nude mice in the HaCaT-Snail cell inoculation group, but no tumors were present in any of the HaCaT cell inoculation group. Induced tumors showed features of poorly differentiated carcinoma with invasion to neighboring muscles and bones. The HaCaT-Snail tumors showed decreased expressions of E-cadherin and cytokeratin, but showed increased expressions of vimentin and N-cadherin. Discussion: The Snail transfected xenograft can improve productivity of malignant tumors, show various histopathological features including invasive growth, and aid in the investigation of tumor progression and the interaction with surrounding tissues.