• Title/Summary/Keyword: x-ray photoelectron

Search Result 1,472, Processing Time 0.033 seconds

Top-Emitting Organic Light-Emitting Diodes Based on the Interfacial Electronic Structures of Bis(8-Quinolinolato)Aluminum (III)/Barium

  • Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.5-6
    • /
    • 2007
  • 반투명 전도성 음극 (semi-transparent conducting cathode)인 Ba (x nm)/Au (20 nm)/ITO (100 nm)을 이용하여 전면발광 유기전계 발광 소자 (top-emitting organic light-emitting didodes, TEOLEDs)를 제작했다. Ba과 bis(8-quinolinolato)aluminum (III) ($Alq_3$) 계면의 전자구조는 엑스선 광전자 분광법 (X-ray photoelectron spectroscopy, XPS), 자외선 광전자 분광법 (ultraviolet photoelectron spectroscopy, UPS) 및 가까운 끝머리 엑스선 흡수 미세구조 (near-edge x-ray absorption fine structure, NEXAFS) 스펙트럼의 광 방출 특성을 통하여 조사되었다. $Alq_3$/Ba 계면 특성에 있어서 XPS와 NEXAFS 특성에 의하면, $Alq_3$ (10.0 nm) 위에 Ba이 연속적으로 증착됨에 따라 Ba으로부터 $Alq_3$로의 전자전달 (electron charge transfer) 특성은 꾸준희 증가된다. 그러나 Ba의 두께가 1.0 nm 이상 초과되면 Ba의 전자전달에 기인한 반응성때문에 $Alq_3$의 분자구조가 해리된다. 한편, 제작된 TEOLEDE의 전류-전압-휘도 곡선의 경우에서도 바륨의 증착 두께가 1.0 nm일 때 가장 우수한 구동특성을 나타냈다.

  • PDF

Surface Characterization of the d-PMMA Thin Films Treated by Oxygen Plasma (산소 플라즈마 처리된 d-PMMA 박막의 표면특성 분석)

  • Kim, Soong-Hoon;Choi, Dong-Jin;Lee, Jeong-Su;Choi, Ho-Suk
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.263-267
    • /
    • 2009
  • In order to improve the hydrophilic property on the surface of d-PMMA(deuterated poly-(methyl methacrylate)) film, it was exposed to oxygen plasma, All experimental conditions were same except to plasma exposure time that was varied from 0 to 180 s, The effects according to the exposure time were identified using contact angles, X-ray reflectometer(XRR), neutron reflectometer(NR), and X-ray photoelectron spectroscopy(XPS). By confirming that as the exposure time increases, water contact angle decreases while the composition of oxygen increases, it was confirmed that the composition of oxygen has a huge influence on improving the hydrophilic property. The physical characters as a function of the exposure time were investigated by the XRR. By analyzing complementally the results of the XRR, NR, and XPS, more detailed chemical bonding conditions were studied by obtaining not only composition of the carbon and oxygen but that of the hydrogen.

Surface Analysis of Modified Polymer Samples by X-Ray Photoelectron Spectroscopy and Rutherford Backscattering Spectroscopy (X-선 광전자 분광법 및 라더포드 후방산란법에 의한 개질된 고분자 시료의 표면분석)

  • Park, Sung-Woo;Kim, Dong-Hwan;Kim, Young-Man;Park, Byung-Sun;Han, Wan-Soo;Suh, Bae-Suk
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.301-313
    • /
    • 1994
  • X-Ray Photoelectron Spectroscopy(XPS) and Rutherford Backscattering Spectroscopy(RBS) are used for the analysis of additives, examination of chemical structure and determination of identity with qualitative and quantitative analysis of surface elements, binding energy level and depth profiling in the surface. We analyzed surface of polyethylene, acrylonitrile butadien rubber, polypropylene, glass, fiber and paper treated with $XeF_2$ or C-F plasma by XPS and RBS. It was found that fluoro element was penetrated to sample surface and the distribution of surface elements are different than untreated samples.

  • PDF

Interfacial Natures and Controlling Morphology of Co Oxide Nanocrystal Structures by Adding Spectator Ni Ions

  • Gwag, Jin-Seog;Sohn, Young-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.505-510
    • /
    • 2012
  • Cobalt oxide nanostructure materials have been prepared by adding several concentrations of spectator Ni ions in solution, and analyzed by electron microscopy, X-day diffraction, calorimetry/thermogravimetric analysis, UV-vis absorption, Raman, and X-ray photoelectron spectroscopy. The electron microscopy results show that the morphology of the nanostructures is dramatically altered by changing the concentration of spectator ions. The bulk XRD patterns of $350^{\circ}C$-annealed samples indicate that the structure of the cobalt oxide is all of cubic Fd-3m $Co_3O_4$, and show that the major XRD peaks shift slightly with the concentration of Ni ions. In Raman spectroscopy, we can confirm the XRD data through a more obvious change in peak position, broadness, and intensity. For the un-sputtered samples in the XPS measurement process, the XPS peaks of Co 2p and O 1s for the samples prepared without Ni ions exhibit higher binding energies than those for the sample prepared with Ni ions. Upon $Ar^+$ ion sputtering, we found $Co_3O_4$ reduces to CoO, on the basis of XPS data. Our study could be further applied to controlling morphology and surface oxidation state.

Preparation, Structure, and Photoemission Studies on the High Temperature Superconductor $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$

  • Choy, Jin-Ho;Choe, Won-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.379-383
    • /
    • 1990
  • $YBa_2Cu_{3-x}Ni_xO_{7-{\delta}}$, with x = 0.05, 0.2, 0.4, 0.7 and 1.0 had been prepared by the thermal decomposition of corresponding nitrates. Among them, the sample with x = 0.05 shows above-liquid-$N_2$ temperature superconductivity with $T_c$ of 88.7K. According to the X-ray diffraction analysis, its crystal symmetry was estimated as orthorhombic with the lattice parameters of a = 3.866${\AA}$, b = 3.893${\AA}$, c = 11.715${\AA}$. The chemical composition of the sample was determined by electron probe microanalysis and the chemical composition around its grain boundaries was carefully studied by the X-ray line scanning technique. From the observed binding energy of Ni-$2p_{3/2}$ orbital electron (B.E. = 853 eV) measured by X-ray photoelectron spectroscopy, the valency state of nickel stabilized in $YBa_2Cu_{2.95}Ni_{0.05}O_{7-{\delta}}$ oxide lattice could be determined to be Ni(II).

Property Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature (열처리에 따른 Diamond-like Carbon (DLC) 박막의 특성변화)

  • Park, Ch.S.;Koo, K.H.;Park, H.H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Diamond-like carbon (DLC) films is a metastable form of amorphous carbon containing a significant fraction of Sp3 bond. DLC films have been characterized by a range of attractive mechanical, chemical, tribological, as well as optical and electrical properties. In this study DLC films were prepared by the RF magnetron sputter system on $SiO_2$ substrates using graphite target. The effects of the post annealing temperature on the Property variation of the DLC films were examined. The DLC films were annealed at temperatures ranging from 300 to $500^{\circ}C$ using rapid thermal process equipment in vacuum. The variation of electrical property and surface morphology as a function of annealing treatment was investigated by using a Hall Effect measurement and atomic force microscopy. Raman and X-ray photoelectron spectroscopy analyses revealed a structural change in the DLC films.

XPS study of sapphire substrate surface nitridated by plasma activated nitrogen source (Plasma로 활성화된 질소 원자를 사용한 사파이어 기판 표면의 저온 질화처리의 XPS 연구)

  • 이지면;백종식;김경국;김동준;김효근;박성주
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.320-327
    • /
    • 1998
  • The chemical aspects of nitridated surface of sapphire(0001) have been studied by X-ray photoelectron spectroscopy. Nitridated layer was formed by remote plasma enhanced-ultrahigh vacuum deposition at a low temperature range. It was confirmed that this nitridated surface was mainly consists of AIN layer. The relative amounts of nitrogen reacted with AL on the sapphire surface and their surface morphology were investigated with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) as a function of radio-frequency power, reaction temperature, and reaction time. The amounts of atomic nitrogen activated by plasma which was subsequently incorporated into sapphire were increased with RF power. But the amounts of nitrogen reacted with AI in sapphire was initially increased and then remained constant. However, the relative amounts of AIN were nearly constant with irrespective of nitridation temperature and time. Furthermore, a depth porfile of nitridated layer with XPS showed that the nitridated surface consisted of three layers with different stoichiometry.

  • PDF

Studies on the etching characteristics of PZT thin films using inductively coupled plasma (고밀도 플라즈마에 의한 PZT 박막의 식각특성 연구)

  • 안태현;김창일;장의구;서용진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.188-192
    • /
    • 2000
  • In this study PZT etching was performed using planar inductively coupled Ar/Cl$_2$/BCI$_3$ plasma. The etch rate of PZT film was 2450 $\AA$/min at Ar(20)/BCl$_3$(80) gas mixing ratio and substrate temperature of 8$0^{\circ}C$. X-ray photoelectron spectroscopy(XPS) analysis for films composition of etched PZT surface was utilized. The chemical bond of PbO is broken by ion bombardment and Cl radical, and the peak of metal Pb in a Pb 4f narrow scan begins to appear upon etching. As increasing additive BCl$_3$content the relative content of oxygen decreases rapidly in contrast with etch rate of PZT thin film. So we though that the etch rate of PZT thin film increased because abundant B and BCl radicals made volatile oxy-compound such as B$_{x}$/O$_{y}$ and/or BClO$_{x}$ bond. We achieved etch profile of about 80$^{\circ}$ at Ar(20)/BCl$_3$(80) gas mixing condition and substrate temperature of 8$0^{\circ}C$TEX>X>.

  • PDF

Soft X-ray Nano-spectroscopy for Electronic Structures of Transition Metal Oxide Nano-structures

  • Oshima, Masaharu
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.317-327
    • /
    • 2014
  • In order to develop nano-devices with much lower power consumption for beyond-CMOS applications, the fundamental understanding and precise control of the electronic properties of ultrathin transition metal oxide (TMO) films are strongly required. The metal-insulator transition (MIT) is not only an important issue in solid state physics, but also a useful phenomenon for device applications like switching or memory devices. For potential use in such application, the electronic structures of MIT, observed for TMO nano-structures, have been investigated using a synchrotron radiation angle-resolved photoelectron spectroscopy system combined with a laser molecular beam epitaxy chamber and a scanning photoelectron microscopy system with 70 nm spatial resolution. In this review article, electronic structures revealed by soft X-ray nano-spectroscopy are presented for i) polarity-dependent MIT and thickness-dependent MIT of TMO ultrathin films of $LaAlO_3/SrTiO_3$ and $SrVO_3/SrTiO_3$, respectively, and ii) electric field-induced MIT of TMO nano-structures showing resistance switching behaviors due to interfacial redox reactions and/or filamentary path formation. These electronic structures have been successfully correlated with the electrical properties of nano-structured films and nano-devices.