DOI QR코드

DOI QR Code

Soft X-ray Nano-spectroscopy for Electronic Structures of Transition Metal Oxide Nano-structures

  • Oshima, Masaharu (Synchrotron Radiation Research Organization, The University of Tokyo)
  • Received : 2014.10.02
  • Accepted : 2014.11.30
  • Published : 2014.11.30

Abstract

In order to develop nano-devices with much lower power consumption for beyond-CMOS applications, the fundamental understanding and precise control of the electronic properties of ultrathin transition metal oxide (TMO) films are strongly required. The metal-insulator transition (MIT) is not only an important issue in solid state physics, but also a useful phenomenon for device applications like switching or memory devices. For potential use in such application, the electronic structures of MIT, observed for TMO nano-structures, have been investigated using a synchrotron radiation angle-resolved photoelectron spectroscopy system combined with a laser molecular beam epitaxy chamber and a scanning photoelectron microscopy system with 70 nm spatial resolution. In this review article, electronic structures revealed by soft X-ray nano-spectroscopy are presented for i) polarity-dependent MIT and thickness-dependent MIT of TMO ultrathin films of $LaAlO_3/SrTiO_3$ and $SrVO_3/SrTiO_3$, respectively, and ii) electric field-induced MIT of TMO nano-structures showing resistance switching behaviors due to interfacial redox reactions and/or filamentary path formation. These electronic structures have been successfully correlated with the electrical properties of nano-structured films and nano-devices.

Keywords

References

  1. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998). https://doi.org/10.1103/RevModPhys.70.1039
  2. K. Horiba, H. Ohguchi, H. Kumigashira, K. Ono, M. Oshima, N. Nakagawa, M. Lippmaa, M. Kawasaki, and H. Koinuma, Review of Scientific Instruments 74, 3406 (2003). https://doi.org/10.1063/1.1584093
  3. K. Horiba, Y. Nakamura, N. Nagamura, S. Toyoda, H. Kumigashira, M. Oshima, K. Amemiya, Y. Senba, and H. Ohashi, Rev. Sci. Instrum. 82, 113701 (2011). https://doi.org/10.1063/1.3657156
  4. A Ohtomo and H. Y. Huang, Nature 427, 423-426 (2004). https://doi.org/10.1038/nature02308
  5. K. Yoshimatsu, R. Yasuhara, H. Kumigashira, and M. Oshima, Phys, Rev, Lett. 101, 026802 (2008). https://doi.org/10.1103/PhysRevLett.101.026802
  6. G. Herranz, M. Basleti , M. Bibes, C. Carretero, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzi, J.-M. Broto, A. Barthelemy, and A. Fert, Phys, Rev, Lett. 98, 216803 (2007). https://doi.org/10.1103/PhysRevLett.98.216803
  7. KS Takahashi, M. Gabay, D. Jaccard, T. Ohnishi, M. Lippmaa, J.-M. Triscone, Nature (London) 441, 195 (2006). https://doi.org/10.1038/nature04731
  8. D. D. Sarma, O. Rader, T. Kachel, A. Chainani, M. Mathew, K. Holldack, W. Gudat, and W. Eberhardt., Phys. Rev. B 49, 14238 (1994). https://doi.org/10.1103/PhysRevB.49.14238
  9. D. H. Kim, D.-W. Kim, B.S. Kang, T. W. Noha, D. R. Lee, K.-B. Lee, S. J. Lee., Solid state Commun. 114, 473 (2000). https://doi.org/10.1016/S0038-1098(00)00095-8
  10. K. Yoshimatsu, T. Okabe, H. Kumigashira, S. Okamoto, S. Aizaki, A. Fujimori, and M. Oshima., Phys. Rev. Lett. 104, 147601 (2010). https://doi.org/10.1103/PhysRevLett.104.147601
  11. M. Takizawa, M. Minohara, H. Kumigashira, D. Toyota, M. Oshima, H. Wadati, T. Yoshida, A. Fujimori, M. Lippmaa, M. Kawasaki, H. Koinuma, G. Sordi, and M. Rozenberg., Phys. Rev. B 80, 235104 (2009). https://doi.org/10.1103/PhysRevB.80.235104
  12. Young Jun Chang, Choong H. Kim, S.-H. Phark, Y. S. Kim, J. Yu, and T. W. Noh., Phys. Rev. Lett. 103, 057201 (2009). https://doi.org/10.1103/PhysRevLett.103.057201
  13. A. Sekiyama, H. Fujiwara, S. Imada, S. Suga, H. Eisaki, S. I. Uchida, K. Takegahara, H. Harima, Y. Saitoh, I. A. Nekrasov, G. Keller, D. E. Kondakov, A. V. Kozhevnikov, Th. Pruschke, K. Held, D. Vollhardt, and V. I. Anisimov., Phys. Rev. Lett. 93, 156402 (2004). https://doi.org/10.1103/PhysRevLett.93.156402
  14. Kalobaran Maiti, U Manju, Sugata Ray, Priya Mahadevan, IH Inoue, C Carbone, DD Sarma., Phys. Rev. B 73, 052508 (2006). https://doi.org/10.1103/PhysRevB.73.052508
  15. S. Okamoto and A. J Millis, Phys, Rev. B 70, 241104 (2004). https://doi.org/10.1103/PhysRevB.70.241104
  16. I. H. Inoue, O. Goto, H. Makino, N. E. Hussey, and M. Ishikawa, Phys. Rev. B 58, 4372 (1998).
  17. T. Yoshida, K. Tanaka, H. Yagi, A. Ino, H. Elsaki, A. fujimori, and Z.-X. Shen, Phys. Rev. Lett. 95, 146404 (2005). https://doi.org/10.1103/PhysRevLett.95.146404
  18. T.-C. Chiang, Surf. Sci. Rep. 39, 181 (2000). https://doi.org/10.1016/S0167-5729(00)00006-6
  19. K. Yoshimatsu, K. Horiba, H. Ku migashira, T. Yoshida, A Fujimori, M. Oshima, Science 333, 319 (2011). https://doi.org/10.1126/science.1205771
  20. T. Yoshida, M. Hashimoto, T. Takizawa, A. Fujimori, M. Kubota, K Ono, H. Eisaki. Phys, Rev. B 82, 085119 (2010). https://doi.org/10.1103/PhysRevB.82.085119
  21. R. Yasuhara, K. Fujiwara, K. Horiba, H. Kumigashira, M. Kotsugi, M. Oshima and H. Takagi Appl, Phys. Lett. 95, 012110 (2009). https://doi.org/10.1063/1.3175720
  22. Z. L. Liao, Z. Z. Wang, Y. Meng, Z. Y. Liu, P. Gao, J. L Gang, H. W. Zhao , X. J. Liang, X. D. Bai and D. M. Chen, Appl. Phys. Lett. 94, 253503 (2009). https://doi.org/10.1063/1.3159471
  23. I. Olefjord, H. J. Mathieu, and P. Marcus, Surf. Interface Anal. 15, 681 (1990). https://doi.org/10.1002/sia.740151108
  24. C. Mitra, Z. Hu, P. Raychaudhuri, S. Wirth, S. I. Csiszar, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 67, 092404 (2003). https://doi.org/10.1103/PhysRevB.67.092404
  25. T. Harada, I. Ohkubo, K. Tsubouchi, H. Kumigashira, T. Ohnishi, M. Lippmaa, Y. Matsumoto, H. Koinuma, and M. Oshima, Appl. Phys. Lett. 92, 222113 (2008). https://doi.org/10.1063/1.2938049
  26. S. Toyoda, T. Namiki, E. Sakai, K. Nakata, M. Oshima and H. Kumigashira, J. Appl. Phys. 114, 243711 (2013). https://doi.org/10.1063/1.4858381
  27. R. Yasuhara, T. Yamamoto, I. Ohkubo, H. Kumigashira and M. Oshima, Appl. Phys. Lett. 97, 132111 (2010). https://doi.org/10.1063/1.3496033
  28. Alejandra B. Gurevich a, Brian E. Bent a, Andrew V. Teplyakov b, Jingguang G. Chen c, Surf. Sci. 442, L971 (1999). https://doi.org/10.1016/S0039-6028(99)00913-9
  29. K. Horiba, K. Fujiwara, N. Nagamura, S. Toyoda, H. Kumigashira, M. Oshima, and H. Takagi Appl. Phys. Lett. 103, 193114 (2013). https://doi.org/10.1063/1.4829469
  30. DC Kim, S Seo, SE Ahn, D-S Suh, MJ Lee, B-H Park, IK Yoo, IG Baek, H-J Kim, EK Yim, JE Lee, SO Park, HS Kim, U-In Chung, JT Moon, BI Ryu, Appl. Phys. Lett. 88, 212102 (2006). https://doi.org/10.1063/1.2206703
  31. K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, Appl. Phys. Lett. 89, 103509 (2006) https://doi.org/10.1063/1.2339032
  32. M. Taguchi, M. Matsunami, Y.Ishida, R. Eguchi, A. Chainani, Y. Takata, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa, Y. Senba, H. Ohashi and S. Shin, Phys. Rev. Lett. 100, 206401 (2008). https://doi.org/10.1103/PhysRevLett.100.206401
  33. S. Toyoda, Y. Nakamura, K. Horiba, H. Kumigashira, M. Oshima, K. Amemiya, e-J. Surf. Sci. Nanotech. 9, 224, (2011). https://doi.org/10.1380/ejssnt.2011.224
  34. Naoka Nagamura, Koji Horiba, Satoshi Toyoda, Shodai Kurosumi, Toshihiro Shinohara, Masaharu Oshima, Hirokazu Fukidome, Maki Suemitsu, Kosuke Nagashio, and Akira Toriumi Appl, Phys, Lett. 102, 241604 (2013). https://doi.org/10.1063/1.4808083
  35. Hirokazu Fukidome, Takayuki Ide, Yusuke Kawai, Toshihiro Shinohara, Naoka Nagamura, Koji Horiba, Masato Kotsugi, Takuo Ohkochi, Toyohiko Kinoshita, Hiroshi Kumighashira, Masaharu Oshima & Maki Suemitsu, Sci, Rep. 4, 5173 (2014).
  36. Hirokazu Fukidome, Kousuke Nagashio, Naoka Nagamura, Keiichiro Tashima, Kazutoshi Funakubo, Koji Horiba, Maki Suemitsu, Akira Toriumi and Masaharu Oshima, Sci, Rep. 4, 5173 (2014).
  37. Naoka Nagamura, Shota Ito, Koji Horiba, Toshihiro Shinohara, Masaharu Oshima, Shin-ichi Nishimura, Atsuo Yamada and Noritaka Mizuno, J. Phyw: Conf. Ser., 502, 012013 (2014).