• Title/Summary/Keyword: x-by-wire

Search Result 240, Processing Time 0.024 seconds

An Experimental Study on Flow Angle with Swirl in a Horizontal Circular Tube (수평 원통 관에서 선회를 동반한 유동각에 대한 실험적 연구)

  • Chang, Tae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.82-87
    • /
    • 2003
  • Flow angle with Swirl in a horizontal circular tube and a cylindrical annuli were experimentally studied for its visualization. This present investigation deals with flow angle, flow visualization studies and vortex core by using oil smoke and a hot wire anemometer for Re = 40,000 and 50000 at X/D = 41, 59 and 71 in a horizontal circular tube. In the swirl air flow, a vortex core was formed at high swirl intensity along the test tube. The flow angle and the vortex core depended on the swirl intensity along the test tube. The results of flow angles with swirl measured by flow visualization and hot wire reasonably agree with those of Sparrow One of the primary objectives of this research was to measure the flow angle with swirl in a cylindrical annuli along the test tube for different Reynolds numbers. The Reynolds number for these measurements ranged from 60,000 to 100,000 with L/D = a to 4.

  • PDF

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Turbulent Characteristics - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 난류특성치에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2001
  • This paper represents the turbulent intensity, the turbulent kinetic energy and Reynolds shear stress in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. The experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The turbulent intensity and the turbulent kinetic energy show that the maximum value is formed in the narrow slits distributed radially on the edge of a cone type swirl burner, hence, the combustion reaction is anticipated to occur actively near this region. And the turbulent intensities ${\upsilon}\;and\;{\omega}$ are disappeared faster than the turbulent intensity u due to the inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the Reynolds shear stress $u{\upsilon}$ is distributed about three times as large as the Reynolds shear stress $u{\omega}$ in the outer region of the cone type gas burner.

  • PDF

STRESS DISTRIBUTION IN ESTHETIC ORTHODONTIC BRACKETS : AN ANALYSIS USING THE FINITE ELEMENT METHOD (유한요소 분석을 통한 심미적 교정 브라켓의 응력 및 구조분석에 관한 연구)

  • Lee, Won-You;An, Ju-Sam;Park, Young-Cheol;Park, Myeong-Kyun;Sohn, Hong-Bum;Jeong, Si-Dong
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.43-49
    • /
    • 1998
  • The aim of this study were to measure and compare the stress level on three type brackets and each other material (stainless steel, ceramic) with tipping and torquing forces by using the finite element analysis and to design biomechanically favorable brackets. For this study, three kinds of brackets were selected(A:Transcend-RMO, B:Signature-Unitek, C:PAW: plain archwire appliance-applied for a patent in Yonsei Udiversity). The slot size of bracket was 0.022inch and the size of archwire was 0.0175x0.025inch and taper shaped archwire was used in PAW. Loading force in tipping was 4.27N and torquing force was 32.858N applied by archwire torsion with 19.7degree and 11.3 degree in C type bracket. The conclusions were that (1) The finite element method proved to be a useful tool in the stress analysis of orthodontic bracket subjected to various forces. (2) With tipping, the stresses were concentrated at the gingival wall of the wire slot where it meets the mesial bracket surface and the incisal wall of the wire slot where it meets the distal bracket surface and with torquing, the stresses were concentrated at the junction of the gingival or incisal wall and base of the slot. (3) The maximum stress value was higher in torquing force than tipping force and therefore it is desirable to design on the basis of torquing force. (4) It was considered that the change in material might be affect on the diminish of stress value in the place of stess concentration. (5) The maximum stress value was highest on PAW bracket when the tipping and torquing force was applied and therefore it would be desirable to use mechanically favorable material on PAW bracket.

  • PDF

Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties (액중 전기선 폭발법을 이용한 Fe3O4/Fe/그래핀 나노복합체 분말의 제조 및 전기화학적 특성)

  • Kim, Yoo-Young;Choi, Ji-Seub;Lee, Hoi-Jin;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.308-314
    • /
    • 2017
  • $Fe_3O_4$/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, $Fe_3O_4$/Fe nanocomposites are fabricated under the same conditions. The $Fe_3O_4$/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The $Fe_3O_4$/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the $Fe_3O_4$/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for $Fe_3O_4$/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.

An Experimental Study on the Three Dimensional Turbulent Flow Characteristics of Swirl Burner for Gas Furnace (가스난방기용 스월버너의 3차원 난류유동 특성에 관한 실험적 연구)

  • Kim, Jang-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.225-234
    • /
    • 2001
  • This paper represents the vector fields, three dimensional mean velocities, the turbulent intensities, the turbulent kinetic energy, and the Reynolds shear stresses in the X-Y plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rates 350 and 450ℓ/min respectively, which are equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of subsonic wind tunnel. The vector plot shows that the maximum axial mean velocity component exists in the narrow slits situated radially on the edge of gas swirl burner, for that reason, there is some entrainment phenomena of ambient air in the outer region of burner. Moreover, mean velocities in the initial region are largely distributed near the outer region of burner at Y/R≒0.97, but they diffuse and develop into the center flow region of burner according to the increase of axial distance. The turbulent intensities and the turbulent kinetic energy due to large inclination of mean velocity and swirl effect show that the maximum value in the initial region of burner is formed in the narrow slits situated radially on the edge of gas swirl burner and large values are mainly formed in the entire region of burner after X/R=2.4358, hence, the combustion reaction is anticipated to occur actively near this region. And the Reynolds shear stresses are also largely distributed from slite to vanes of gas swirl burner in the intial region, but their values largely disappear after X/R=3.2052.

Study on the Measurement of Emission Spectrum and Reaction Mechanism of OH Radical in the Nitrogen Corona Discharge System for Removal of $NO_x$ in Flue Gas (배연가스의 $NO_x$제거용 코로나 방전장치에서 OH 발광 스펙트럼 측정 및 관련 반응 연구)

  • Park, Chul-Woung;Hahn, Jae-Won;Shin, Dong-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.27-38
    • /
    • 1999
  • We constructed a wire-cylinder type pulsed corona discharge system for $NO_x$ removal, which was operated in room temperature. A emission spectrometer was built with a boxcar averager and monochrometer equipped with photo-multiplier tube detector. The sensitivity of the emission spectrometer was greatly improved by synchronizing the emission spectrometer with pulsed corona discharge system using a triggered spark-gap switch. $N_2$ spectrum($c^3{\Pi}_u{\rightarrow}X^1{\Sigma}_g{^+}$) was measured in the range of 300 - 450 nm and oxidizing OH radical emission($A^2{\Sigma}^+{\rightarrow}X^2{\Pi}$) was measured in case $N_2$ was supplied with water bubbling. As wet gas composition of inlet $N_2$ supplied in the discharge system increased, the intensity of OH emission was increased and saturated at wet gas composition 50%. We also investigated additive effect of $C_2H_4,\;H_2O,\;H_2O_2$ on the intensity of OR emission and $NO/NO_2/NO_x$ reduction and analysed the related reaction mechanism in corona discharge process. $H_2O_2$ additive increased the intensity of OH emission and $NO/NO_x$ reduction.

  • PDF

Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge (DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용)

  • Choi, Yu-ri;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

Synthesis and Characteristics of CU/CUO Nanopowders by Pulsed Wire Evaporativn(PWE) Method (전기폭발법에 의한 CU/CUO 나노분말의 제조 및 분말특성)

  • Maeng, D.Y.;Rhee, C.K.;Lee, N.H.;Park, J.H.;Kim, W.W.;Lee, E.G.
    • Korean Journal of Materials Research
    • /
    • v.12 no.12
    • /
    • pp.941-946
    • /
    • 2002
  • Both Cu and Cu-oxide nanopowders have great potential as conductive paste, solid lubricant, effective catalysts and super conducting materials because of their unique properties compared with those of commercial micro-sized ones. In this study, Cu and Cu-oxide nanopowders were prepared by Pulsed Wire Evaporation (PWE) method which has been very useful for producing nanometer-sized metal, alloy and ceramic powders. In this process, the metal wire is explosively converted into ultrafine particles under high electric pulse current (between $10^4$ and $10^{ 6}$ $A/mm^2$) within a micro second time. To prevent full oxidations of Cu powder, the surface of powder has been slightly passivated with thin CuO layer. X-ray diffraction analysis has shown that pure Cu nanopowders were obtained at $N_2$ atmosphere. As the oxygen partial pressure increased in $N_2$ atmosphere, the gradual phase transformation occurred from Cu to $Cu_2$O and finally CuO nanopowders. The spherical Cu nanopowders had a uniform size distribution of about 100nm in diameter. The Cu-oxide nanopowders were less than 70nm with sphere-like shape and their mean particle size was 54nm. Smaller size of Cu-oxide nanopowders compared with that of the Cu nanopowders results from the secondary explosion of Cu nanopowders at oxygen atmosphere. Thin passivated oxygen layer on the Cu surface has been proved by XPS and HRPD.

Hot Wire Chemical Vapor Deposition of Hydrogenated Microcrystalline Silicon Films (열선 CVD법에 의한 수소화된 미세결정 실리콘 박막 증착)

  • Lee, Jeong-Chul;Kang, Ki-Whan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1928-1930
    • /
    • 1999
  • This paper describes on the growth of a ${\mu}c$-Si:H film on low cost substrate like glass by Hot Wire CVD method. The ${\mu}c$-Si:H film, prepared in 50mTorr pressure, $1800^{\circ}C$ wire temperature, and $H_2/SiH_4$ 10 showed three clear peaks. (111), (220), and (311) in X-ray spectroscopy. The crystallite size and crystalline volume fraction, calculated from Raman spectroscopy, was about 6nm and 70%, respectively. The FTIR transmission spectra of the film showed a different absorption peak with a-Si:H film around $2000-2100cm^{-1}$.

  • PDF

Fabrication and Mechanical Characteristics of Bulk Nickel/Carbon Nanotube Nanocomposites via the Electrical Explosion of Wire in Liquid and Spark Plasma Sintering Method

  • Minh, Thuyet-Nguyen;Hong, Hai-Nguyen;Kim, Won Joo;Kim, Ho Yoon;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.213-220
    • /
    • 2016
  • In this study, bulk nickel-carbon nanotube (CNT) nanocomposites are synthesized by a novel method which includes a combination of ultrasonication, electrical explosion of wire in liquid and spark plasma sintering. The mechanical characteristics of the bulk Ni-CNT composites synthesized with CNT contents of 0.7, 1, 3 and 5 wt.% are investigated. X-ray diffraction, optical microscopy and field emission scanning electron microscopy techniques are used to observe the different phases, morphologies and structures of the composite powders as well as the sintered samples. The obtained results reveal that the as-synthesized composite exhibits substantial enhancement in the microhardness and values more than 140 HV are observed. However an empirical reinforcement limit of 3 wt.% is determined for the CNT content, beyond which, there is no significant improvement in the mechanical properties.