Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.4.308

Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties  

Kim, Yoo-Young (Department of Mechanical Engineering, Gyeongnam National University of Science and Technology)
Choi, Ji-Seub (Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
Lee, Hoi-Jin (Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
Cho, Kwon-Koo (Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
Publication Information
Journal of Powder Materials / v.24, no.4, 2017 , pp. 308-314 More about this Journal
Abstract
$Fe_3O_4$/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, $Fe_3O_4$/Fe nanocomposites are fabricated under the same conditions. The $Fe_3O_4$/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The $Fe_3O_4$/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the $Fe_3O_4$/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for $Fe_3O_4$/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.
Keywords
$Fe_3O_4$/Fe/graphene nanocomposite powder; Anode materials; Electrical wire explosion; Lithium ion battery; Electrochemical property;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. Scrosati, J. Hassoun and Y. K. Sun: Energy Environ. Sci., 4 (2011) 3287.   DOI
2 Y. Xu, Y. Zhu, Y. Liu and C. Wang: Adv. Energy Mater., 3 (2013) 128.   DOI
3 Y. Li, B. Tan and Y. Wu: Nano Lett., 8 (2008) 265.   DOI
4 J. Chen, L. Xu, W. Li and X. Gou: Adv. Mater., 17 (2005) 582.   DOI
5 Z. M. Cui, L. Y. Hang, W. G. Song and Y. G. Guo: Chem. Mater., 21 (2009) 1162.   DOI
6 Y. Wang, F. B. Su, J. Y. Lee and X. S. Zhao: Chem. Mater., 18 (2006) 1347.   DOI
7 X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee and L. A. Archer: Adv. Mater., 18 (2006) 2325.   DOI
8 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon: Nature, 407 (2000) 496.   DOI
9 M. R. Palacin, J. Cabana, L. Monconduit and D. Larcher: Adv. Mater., 22 (2010) E170   DOI
10 H. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang and Y. Cui, H. Dai: J. Am. Chem. Soc., 132 (2010) 13978.   DOI
11 L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P. K. Shen and Q. Gao: Adv. Funct. Mater., 20 (2010) 617.   DOI
12 Y. Wu, Y. Wei, J. Wang, K. Jiang and S. Fan: Nano Lett., 13 (2013) 818   DOI
13 H. Liu, G. X. Wang, J. Z. Wang and D. Wexler: Electrochem. Commun., 10 (2008) 1879.   DOI
14 T. Muraliganth, A. V. Murugan and A. Manthiram: Chem. Commun., 212 (2009) 7360.
15 L. Taberna, S. Mitra, P. Poizot, P. Simon and J. M. Tarascon: Nat. Mater., 5 (2006) 567   DOI
16 W. Li, L. Xu and J. Chen: Adv. Funct. Mater., 15 (2005) 851.   DOI
17 F. Zhan, B. Geng and Y. Guo: Chem. Eur. J., 15 (2009) 6169.   DOI
18 S. L. Chou, J. Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H. K. Liu and S. X. Dou: J. Mater. Chem., 20 (2010) 2092.   DOI
19 M. M. Rahman, S. L. Chou, C. Zhong, J. Z. Wang, D. Wexler and H. K. Liu: Solid State Ionics, 180 (2010) 1646.   DOI
20 J. Su, M. H. Cao, L. Ren and C. W. Hu: J. Phys. Chem. C, 115 (2011) 14469.
21 P. Wu, N. Du, H. Zhang, J. X. Yu and D. R. Yang: J. Phys. Chem. C, 115 (2011) 3612.
22 L. Wang, Y. Yu, P. C. Chen, D. W. Zhang and C. H. Chen: J. Power Sources, 183 (2008) 717.   DOI
23 Y. Yu, C. H. Chen and Y. Shi: Adv. Mater., 19 (2007) 993.   DOI
24 Y. He, L. Huang, J. S. Cai, X. M. Zheng and S. G. Sun: Electrochim. Acta, 55 (2010) 1140.   DOI
25 D. Y. Chen, G. Ji, Y. Ma, J. Y. Lee and J. M Lu: ACS Appl. Mater. Interfaces, 3 (2011) 3078.   DOI
26 E. Kang, Y. S. Jung, A. S. Cavanagh, G. H. Kim, S. M. George, A. C. Dillon, J. K. Kim and J. Lee: Adv. Funct. Mater., 21 (2011) 2430.   DOI
27 H. J. Ryu, Y. H. Lee, K. U. Son, Y. M. Kong, J. C. Kim, B. K. Kim and J. Y. Yun: J. Korean Powder Metall. Inst., 18 (2011) 105.   DOI
28 M. Zhang, D. Lei, X. Yin, L. Chen, Q. Li, Y. Wang and T. Wang: J. Mater. Chem., 20 (2010) 5538.   DOI
29 C. He, S. Wu, N. Zhao, C. Shi, E. Liu and J. Li: ACS Nano, 5 (2013) 4459.