DOI QR코드

DOI QR Code

Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties

액중 전기선 폭발법을 이용한 Fe3O4/Fe/그래핀 나노복합체 분말의 제조 및 전기화학적 특성

  • Kim, Yoo-Young (Department of Mechanical Engineering, Gyeongnam National University of Science and Technology) ;
  • Choi, Ji-Seub (Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University) ;
  • Lee, Hoi-Jin (Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University) ;
  • Cho, Kwon-Koo (Department of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
  • 김유영 (경남과학기술대학교 기계공학과) ;
  • 최지습 (경상대학교 나노신소재융합공학과 & 그린에너지 융합연구소) ;
  • 이회진 (경상대학교 나노신소재융합공학과 & 그린에너지 융합연구소) ;
  • 조권구 (경상대학교 나노신소재융합공학과 & 그린에너지 융합연구소)
  • Received : 2017.07.22
  • Accepted : 2017.08.16
  • Published : 2017.08.28

Abstract

$Fe_3O_4$/Fe/graphene nanocomposite powder is synthesized by electrical wire explosion of Fe wire and dispersed graphene in deionized water at room temperature. The structural and electrochemical characteristics of the powder are characterized by the field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, field-emission transmission electron microscopy, cyclic voltammetry, and galvanometric discharge-charge method. For comparison, $Fe_3O_4$/Fe nanocomposites are fabricated under the same conditions. The $Fe_3O_4$/Fe nanocomposite particles, around 15-30 nm in size, are highly encapsulated in a graphene matrix. The $Fe_3O_4$/Fe/graphene nanocomposite powder exhibits a high initial charge specific capacity of 878 mA/g and a high capacity retention of 91% (798 mA/g) after 50 cycles. The good electrochemical performance of the $Fe_3O_4$/Fe/graphene nanocomposite powder is clearly established by comparison of the results with those obtained for $Fe_3O_4$/Fe nanocomposite powder and is attributed to alleviation of volume change, good distribution of electrode active materials, and improved electrical conductivity upon the addition of graphene.

Keywords

References

  1. B. Scrosati, J. Hassoun and Y. K. Sun: Energy Environ. Sci., 4 (2011) 3287. https://doi.org/10.1039/c1ee01388b
  2. Y. Xu, Y. Zhu, Y. Liu and C. Wang: Adv. Energy Mater., 3 (2013) 128. https://doi.org/10.1002/aenm.201200346
  3. Y. Li, B. Tan and Y. Wu: Nano Lett., 8 (2008) 265. https://doi.org/10.1021/nl0725906
  4. J. Chen, L. Xu, W. Li and X. Gou: Adv. Mater., 17 (2005) 582. https://doi.org/10.1002/adma.200401101
  5. Z. M. Cui, L. Y. Hang, W. G. Song and Y. G. Guo: Chem. Mater., 21 (2009) 1162. https://doi.org/10.1021/cm8033609
  6. Y. Wang, F. B. Su, J. Y. Lee and X. S. Zhao: Chem. Mater., 18 (2006) 1347. https://doi.org/10.1021/cm052219o
  7. X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee and L. A. Archer: Adv. Mater., 18 (2006) 2325. https://doi.org/10.1002/adma.200600733
  8. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon: Nature, 407 (2000) 496. https://doi.org/10.1038/35035045
  9. M. R. Palacin, J. Cabana, L. Monconduit and D. Larcher: Adv. Mater., 22 (2010) E170 https://doi.org/10.1002/adma.201000717
  10. H. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Liang and Y. Cui, H. Dai: J. Am. Chem. Soc., 132 (2010) 13978. https://doi.org/10.1021/ja105296a
  11. L. Tian, H. Zou, J. Fu, X. Yang, Y. Wang, H. Guo, X. Fu, C. Liang, M. Wu, P. K. Shen and Q. Gao: Adv. Funct. Mater., 20 (2010) 617. https://doi.org/10.1002/adfm.200901503
  12. Y. Wu, Y. Wei, J. Wang, K. Jiang and S. Fan: Nano Lett., 13 (2013) 818 https://doi.org/10.1021/nl3046409
  13. H. Liu, G. X. Wang, J. Z. Wang and D. Wexler: Electrochem. Commun., 10 (2008) 1879. https://doi.org/10.1016/j.elecom.2008.09.036
  14. T. Muraliganth, A. V. Murugan and A. Manthiram: Chem. Commun., 212 (2009) 7360.
  15. L. Taberna, S. Mitra, P. Poizot, P. Simon and J. M. Tarascon: Nat. Mater., 5 (2006) 567 https://doi.org/10.1038/nmat1672
  16. Y. Yu, C. H. Chen and Y. Shi: Adv. Mater., 19 (2007) 993. https://doi.org/10.1002/adma.200601667
  17. W. Li, L. Xu and J. Chen: Adv. Funct. Mater., 15 (2005) 851. https://doi.org/10.1002/adfm.200400429
  18. F. Zhan, B. Geng and Y. Guo: Chem. Eur. J., 15 (2009) 6169. https://doi.org/10.1002/chem.200802561
  19. S. L. Chou, J. Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H. K. Liu and S. X. Dou: J. Mater. Chem., 20 (2010) 2092. https://doi.org/10.1039/b922237e
  20. M. M. Rahman, S. L. Chou, C. Zhong, J. Z. Wang, D. Wexler and H. K. Liu: Solid State Ionics, 180 (2010) 1646. https://doi.org/10.1016/j.ssi.2009.10.018
  21. J. Su, M. H. Cao, L. Ren and C. W. Hu: J. Phys. Chem. C, 115 (2011) 14469.
  22. P. Wu, N. Du, H. Zhang, J. X. Yu and D. R. Yang: J. Phys. Chem. C, 115 (2011) 3612.
  23. L. Wang, Y. Yu, P. C. Chen, D. W. Zhang and C. H. Chen: J. Power Sources, 183 (2008) 717. https://doi.org/10.1016/j.jpowsour.2008.05.079
  24. Y. He, L. Huang, J. S. Cai, X. M. Zheng and S. G. Sun: Electrochim. Acta, 55 (2010) 1140. https://doi.org/10.1016/j.electacta.2009.10.014
  25. D. Y. Chen, G. Ji, Y. Ma, J. Y. Lee and J. M Lu: ACS Appl. Mater. Interfaces, 3 (2011) 3078. https://doi.org/10.1021/am200592r
  26. E. Kang, Y. S. Jung, A. S. Cavanagh, G. H. Kim, S. M. George, A. C. Dillon, J. K. Kim and J. Lee: Adv. Funct. Mater., 21 (2011) 2430. https://doi.org/10.1002/adfm.201002576
  27. H. J. Ryu, Y. H. Lee, K. U. Son, Y. M. Kong, J. C. Kim, B. K. Kim and J. Y. Yun: J. Korean Powder Metall. Inst., 18 (2011) 105. https://doi.org/10.4150/KPMI.2011.18.2.105
  28. M. Zhang, D. Lei, X. Yin, L. Chen, Q. Li, Y. Wang and T. Wang: J. Mater. Chem., 20 (2010) 5538. https://doi.org/10.1039/c0jm00638f
  29. C. He, S. Wu, N. Zhao, C. Shi, E. Liu and J. Li: ACS Nano, 5 (2013) 4459.