• Title/Summary/Keyword: x-Ray diffraction (XRD)

Search Result 2,640, Processing Time 0.027 seconds

A study on characteristics of palace wallpaper in the Joseon Dynasty - Focusing on Gyeongbokgung Palace, Changdeokgung Palace and Chilgung Palace - (조선시대 궁궐 도배지 특성 연구 - 경복궁, 창덕궁, 칠궁을 중심으로 -)

  • KIM Jiwon;KIM Jisun;KIM, Myoungnam;JEONG Seonhwa
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.1
    • /
    • pp.80-97
    • /
    • 2023
  • By taking wallpaper specimens from Gyeongbokgung Palace, Changdeokgung Palace, and Chilgung Palace preserved from the late Joseon Dynasty to the present, we planned in this study to determine the types and characteristics of the paper used as wallpaper in the Joseon royal family. First, we confirmed the features of paper hanging in the palaces with old literature on the wallpaper used by the royal family based on archival research. Second, we conducted a field survey targeting the royal palaces whose construction period was relatively clear, and analyzed the first layer of wallpaper directly attached to the wall structure after sampling the specimens. Therefore, we confirmed that the main raw material was hanji, which was used as a wallpaper by the royal family, and grasped the types of substances(dyes and pigments) used to produce a blue color in spaces that must have formality by analyzing the blue-colored paper. Based on the results confirmed through the analysis, we checked documents and the existing wallpaper by comparing the old literature related to wallpaper records of the Joseon Dynasty palaces. We also built a database for the restoration of cultural properties when conserving the wallpaper in the royal palaces. We examined the changes in wallpaper types by century and the content according to the place of use by extracting wallpaper-related contents recorded in 36 cases of Uigwe from the 17th to 20th centuries. As a result, it was found that the names used for document paper and wallpaper were not different, thus document paper and wallpaper were used without distinction during the Joseon Dynasty. And though there are differences in the types of wallpaper depending on the period, it was confirmed that the foundation of wallpaper continued until the late Joseon Dynasty, with Baekji(white hanji), Hubaekji(thick white paper), jeojuji(common hanji used to write documents), chojuji(hanji used as a draft for writing documents) and Gakjang(a wide and thick hanji used as a pad). As a result of fiber identification by the morphological characteristics of fibers and the normal color reaction(KS M ISO 9184-4: Graph "C" staining test) for the first layer of paper directly attached to the palace wall, the main materials of hanji used by the royal family were confirmed and the raw materials used to make hanii in buildings of palaces based on the construction period were determined. Also, as a result of analyzing the coloring materials of the blue decorative paper with an optical microscope, ultraviolet-visible spectroscopic analysis(UV-Vis), and X-ray diffraction analysis(XRD), we determined that the type of blue decorative paper dyes and pigments used in the palaces must have formality and identified that the raw materials used to produce the blue color were natural indigo, lazurite and cobalt blue.

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Micromorphological and Mineral Characteristics of the Jang-won Series which have Fragipan in the soil Profile (경반층 토양인 장원통의 미세형태학적 및 광물학적 특성)

  • Moon, Yong-Hee;Zhang, Yong-Seon;Chun, Hyen-Chung;Sonn, Yeon-Kyu;Hyun, Byung-Keun;Park, Chan-Won;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.916-921
    • /
    • 2011
  • This study was carry out on a Jang-Won series (fine loamy, mixed, mesic family of typic fragipan) that were established and classified as a fragipan soil in Korea. The morphological, physical, chemical and minerals characteristics of Jang-Won series were studied to determine the genesis of fragipan soils in natural environment. Each sample was analyzed for its physical, chemical and mineralogical characteristics. The particle size distribution of samples was measured using pipette method. Clay minerals were investigated on parallel-oriented specimens of the clay fraction ($<2{\mu}m$) from each horizon, separated by sieving and centrifugation, using X-ray diffraction (XRD) analysis. Micromorphological observations were made on thin sections prepared from soil blocks impregnated with Crystic Resin, cut and ground to less than $30{\mu}m$ in thickness, and finally polished with diamond paste. Most horizons have pH values in the range of fewer than 5.0 and have very low base-saturation values. Their textural classification ranges from silt loam to loam, the lower horizons being the finer. The clay fraction revealed the occurrence of illite, kaolinite, chlorite and vermiculite. The micro-morphological analysis carries out thin sections from each soil profile. The silt concentrations occur as extremely dense and homogenous bands or zones of silt-sized materials, brownish in colour in plane-polarized light and anisotropic in cross-polarized light, surrounding or adhering to skeleton grains. The genesis of fragipan in the Jangweon series assumed composition of clay fraction rather than silt concentration. Therefore, this results suggested an authentic interpretation which Jangweon series is classification as Typic Fragiochrepts.

Solvothermal Preparation of Nanocrystalline TiO2 Using Alcohol-water Mixed Solvent (알코올-물 혼합용액을 이용하는 Solvothermal 법에 의한 나노크기의 TiO2 제조)

  • Lee, Sang Geun;Park, Seong Soo;Hong, Seong Soo;Park, Jong Myung;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.685-690
    • /
    • 2011
  • In this study, a solvothermal reaction to prepare nanocrystalline titania was carried out using $TiCl_4$ and mixed solvents of alcohol and water. The effects of the type and the composition of alcohol on the crystal structure and agglomeration of final $TiO_2$ products were investigated. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM). In the solvothermal reaction using the n-butanol solutions with different volume ratios of n-butanol/water (100/0, 75/25, 50/50, 25/75, 0/100), the extent of agglomeration of obtained rutile $TiO_2$ was found to change with the volume ratio of n-butanol/water, and the n-butanol/water ratio of 75/25 revealed the best result for the preparation of well-dispersed nanocrystalline $TiO_2$ powders. The crystal phase of $TiO_2$ prepared through the solvothermal reaction changed with the type of alcohol in solvent (alcohol/water = 75/25). $TiO_2$ products obtained with the aqueous solutions of methanol, ethanol and isopropanol have an anatase phase, while that with n-butanol has a rutile phase. The results showed that, in the solvothermal reaction using both $TiCl_4$ as a starting material and the alcohol-water mixed solvents without any other additive, the enhancement of dispersion and control of crystal structure of $TiO_2$ products can be feasible by simply varying the composition and type of alcohol in the mixed solvents.

Heat Shield Property of Nanostructural-regulated Fe2O3/TiO2 Composites Filled with Polyacrylate Paint (나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성)

  • Kim, Dae Won;Ma, Young Kil;Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Fe2O3 nanoparticles with the mixed structure of cubic and nanorod were synthesized by precipitation, hydrothermal, sol-gel method, etching process and heat treatment. Fe2O3/TiO2 core-shell (CS) of type Fe2O3@TiO2 composite was fabricated on a 20 nm nanolayer of TiO2 coated on the surface of Fe2O3 nanoparticles. Fe2O3/TiO2 yolk-shell (YS) composite was prepared by chemical etching and heat treatment of Fe2O3/TiO2 CS nanoparticles. Physical properties of Fe2O3, Fe2O3@TiO2 CS and Fe2O3@TiO2 YS nanoparticles were characterized by FE-SEM, HR-TEM and X-ray diffraction. The solar reflectance, commission internationale de l'Elcairage (CIE) color coordinate and heat shield temperatures of Fe2O3, CS and YS type Fe2O3@TiO2 pigments filled with poly acrylate (PA) paints were investigated by UV-Vis-NIR spectrometer and homemade heat shield temperature measuring device. The Fe2O3@TiO2 YS red pigment filled PA composite exhibited excellent near infrared light reflecting performance and also reduced the heat shield temperature of 13 ℃ than that of Fe2O3 filled counterparts.

Improved Electrochemical Performance and Minimized Residual Li on LiNi0.6Co0.2Mn0.2O2 Active Material Using KCl (KCl을 사용한 LiNi0.6Co0.2Mn0.2O2계 양극활물질의 잔류리튬 저감 및 전기화학특성 개선)

  • Yoo, Gi-Won;Shin, Mi-Ra;Shin, Tae-Myung;Hong, Tae-Whan;Kim, Hong-kyeong
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Using a precursor of $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ as a starting material, a surface-modified cathode material was obtained by coating with KCl, where the added KCl reduces residual Li compounds such as $Li_2CO_3$ and LiOH, on the surface. The resulting electrochemical properties were investigated. The amounts of $Li_2CO_3$ and LiOH decreased from 8,464 ppm to 1,639 ppm and from 8,088 ppm to 6,287 ppm, respectively, with 1 wt% KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ that had been calcined at $800^{\circ}C$. X-ray diffraction results revealed that 1 wt% of KCl added $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ did not affect the parent structure but enhanced the development of hexagonal crystallites. Additionally, the charge transfer resistance ($R_{ct}$) decreased dramatically from $225{\Omega}$ to $99{\Omega}$, and the discharge capacity increased to 182.73mAh/g. Using atomic force microscopy, we observed that the surface area decreased by half because of the exothermic heat released by the Li residues. The reduced surface area protects the cathode material from reacting with the electrolyte and hinders the development of a solid electrolyte interphase (SEI) film on the surface of the oxide particles. Finally, we found that the introduction of KCl into $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ is a very effective method of enhancing the electrochemical properties of this active material by reducing the residual Li. To the best of our knowledge, this report is the first to demonstrate this phenomenon.

Effects of Magnesium on Sulfate Resistance of Alkali-activated Materials (알칼리 활성화 결합재의 황산염 침식에 미치는 마그네슘의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Ra, Jung-Min;Kim, Hyung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.109-116
    • /
    • 2017
  • This paper describes the investigation into the durability alkali-activated materials(AAM) mortar and paste samples manufactured using fly-ash(FA) and ground granulated blast furnace slag(GGBFS) exposed to a sulfate environment with different GGBFS replace ratios(30, 50 and 100%), sodium silicate modules($Ms[SiO_2/Na_2O]$ 1.0, 1.5 and 2.0). The tests involved immersions into 10% sodium sulfate solution($Na_2SO_4$), 10% magnesium sulfate solution($MgSO_4$), 10% magnesium nitrate solution($Mg(NO_3)_2$) and 5% magnesium nitrate($Mg(NO_3)_2$+5% sodium sulfate solution+$Na_2SO_4$). The evolution of compressive strength, weight, length expansion and microstructural observation such as x-ray diffraction were studied. As a results, in case of immersed in $Na_2SO_4$, $Mg(NO_3)_2$ and $Mg(NO_3)_2+Na_2SO_4$ shows increase in long-term strength. However, for samples immersed in $MgSO_4$, the general observation was that the compressive strength decreased after immersion. The most drastic reduction of compressive strength and expansion of weight and length occurred when GGBFS or Ms ratios were higher. Also, the XRD analysis of samples immersed in magnesium sulfate indicated that expansion of AAM caused by gypsum($CaSO_4{\cdot}2H_2O$) and brucite(MgOH). The results showed that, an additional condition $Mg^{2+}$ in which ${SO_4}^{2-}$ is the presence of a certain concentration, sulfate erosion has to be accelerated.

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.

Solubility Improvement of Cuttle Bone Powder Using Organic Acids (유기산처리에 의한 갑오징어갑 분말의 가용성 개선)

  • KIM Jin-Soo;CHO Moon-LAE;HEU Min-Soo;CHO Tae-Jong;AN Hwa-Jin;CHA Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • As a pan of a study on effective use of seafood processing by-products, such as cuttle bone as a calcium source, we examined on the kind of organic acid (acetic acid and lactic acid), reaction concentration (mole ratio of calcium to mole of organic acid), reaction temperature $(20\~60^{\circ}C)$ and reaction time (6$\~$24 hours) as reaction conditions for the solubility improvement of cuttle bone powder. The high soluble cuttle bone powder was also prepared from the optimal reaction conditions and partially characterized. From the results on examination of reaction conditions, the high soluble cuttle bone powder was prepared with 0.4 in mole ratio of a calcium to mole of a acetic acid at room temperature for 12 hours, Judging from the patterns of IR and X-ray diffraction, the main component of the high soluble cuttle bone powder was presented as a form of calcium acetate, and a scanning electron micrograph showed an irregular form. The soluble calcium content in the high soluble cuttle bone powder was $5.3\%$ and it was improved about 1,380 times compared to a raw cuttle bone powder. For the effective use of the high soluble cuttle bone powder as a material for a functional improvement in processing, it should be used after the calcium treatment at room temperature for about 1 hour in tap water or distilled water. from these results, we concluded that it is possible to use the high soluble cut시e bone powder as a material for a functional improvement in processing.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.