• 제목/요약/키워드: woven carbon fiber

검색결과 83건 처리시간 0.025초

사출성형용 열가소성 펠렛을 이용한 탄소섬유 복합소재 제작에 관한 연구 (A Study on the Production of Carbon Fiber Composites using Injection-molding Grade Thermoplastic Pellets)

  • 정의철;윤경환;김종선;이성희
    • 소성∙가공
    • /
    • 제25권6호
    • /
    • pp.402-408
    • /
    • 2016
  • A manufacturing technology of carbon fiber composites with thermoplastic polymer pellets and continuous woven fiber was investigated using a compression molding process. To secure the impregnation of resin into the porosity of fabric the composite specimens were prepared with general injection-molding grade polypropylene pellets and low viscosity polycarbonate pellets. Tensile tests of polypropylene and polycarbonate composites were performed. Polycarbonate composites showed higher fracture strength than that of polypropylene composites because of the difference of matrix properties. However, the increase rate of strength was lower than that of polypropylene composites due to the difference of coherence between matrix and reinforcement. To investigate the effect of carbon fiber volume fraction on the fracture strength variation polypropylene composites with different volume fraction were compression molded and tensile tests were performed together. It was shown that the fracture strength of the polypropylene composites increased by 3.2, 5.4 and 6.9 times with the increase of carbon fabric volume fraction of 0.256, 0.367, and 0.480, respectively.

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

3차원 직조형 금속복합재료의 제조와 특성분석 (Fabrication and Characterization of Al Matrix Composites Reinforced with 3-D Orthogonal Carbon Textile Preforms)

  • 이상관;변준형;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.188-191
    • /
    • 2002
  • 3-D orthogonal woven carbon/Al composites were fabricated using a pressure infiltration casting method. Especially, to minimize geometrical deformation of fiber pattern and $Al_4C_3$ formation, the process parameters of the minimum pressurizing force, melting temperature, delay and holding time of molten aluminum pressurizing was optimized through the PC-controlled monitoring system. Resonant ultrasound spectroscopy (RUS) was utilized to measure the effective elastic constants of 3-D orthogonal woven carbon/Al composites. The CTE measurement was conducted using strain gages in a heating oven.

  • PDF

열처리시 발생되는 잔류응력이 금속복합체에 미치는 영향에 관한 실험 및 수치해석적 연구 (An Experimental and Numerical Study on the Thermally Induced Residual Stress Effect in Metal Matrix Composites)

    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.108-117
    • /
    • 1997
  • A continuum analysis has been performed for the application to the thermo-elasto-plastic behavior in a discontinuous metal matrix composite. an FEM (Finite Element Method) analysis was implemented to obtain the internal field quantities of composite as well as overall composite behavior and an experiment was demonstrated to compare with the numerical simulation . As the procedure, a reasonably optimized FE mesh generation, the appropriate imposition of boundary condition , and the relevant post processing such as elastoplastic thermomchanical analysis were taken into account. For the numerical illustration, an aligned axisymmetric single fiber model with temperature dependent material properties and precipitation hardening effect has been employed to assess field quantities. It was found that the residual stresses are induced substantially by the temperature drop during the thermal treatment and that the FEM results of the vertically and horizontally constrained model give a good agreement with experimental data.with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

평직 및 주자직 복합재료의 탄성계수 예측 (Prediction of engineering constants for plain and 8-hardness satin woven composites)

  • 변준형
    • 대한기계학회논문집A
    • /
    • 제21권11호
    • /
    • pp.1757-1764
    • /
    • 1997
  • The geometric and elastic models based on the unit cell have been proposed to predict the geometric characteristics and the engineering constants of plain and satin woven composites. In the geometric model, length and inclined angle of the yarn crimp and the fiber volume fraction of woven composites have been predicted. In the elastic model, the coordinate transformation has been utilized to transform the elastic constants of the yarn crimp to those of woven composites, and the effective elastic constants have been determined from the volume averaging of the constituent materials. Good correlations between the model predictions and the experimental results of carbon/epoxy and glass/epoxy woven composites have been observed. Based on the model, the effect of various geometric parameters and materials on the three-dimensional elastic properties of woven composites can be identified.

적층각도에 따른 단방향 CFRP에서의 중앙 크랙의 파괴 거동에 관한 연구 (A Study on Fracture Behavior of Center Crack at Unidirectional CFRP due to Stacking Angle)

  • 박재웅;전성식;조재웅
    • Composites Research
    • /
    • 제29권6호
    • /
    • pp.342-346
    • /
    • 2016
  • 경량화 소재 중 CFRP(Carbon Fiber Reinforced Plastic)는 카본 섬유를 이용한 섬유구조물이다. 카본과 플라스틱의 특성을 갖는 복합소재이다. 섬유구조는 섬유방향으로 큰 강도를 갖는다. 이러한 경량 소재인 CFRP로 가장 많이 사용되는 것은 직조된 CFRP이다. 직조된 CFRP는 단방향 CFRP에 비하여 구조가 안정적이기 때문이다. 단직조된 CFRP는 고가이다. 따라서 본 연구는 단방향 CFRP의 섬유 구조 특성을 파악하고자 하였다. 본 연구에서는 적층각도 [0/X/-X/0]로 X를 변수로 갖는다. X의 각도 위상이 반전되어 적층된 단방향 CFRP이다. 이러한 단방향 CFRP를 이용하여 중앙 크랙을 갖는 두께 2 mm 판재 형태의 해석 모델을 이용하였다. 해석에서는 핀으로 연결된 상부와 하부에서 하중이 가해지고 있으며 중앙 크랙부분에서 파단을 연구한다. 해석 모델은 CATIA를 이용한 3D Surface 모델로 설계하였다. CFRP 적층을 위해, ANSYS프로그램에서 ACP를 이용한 적층 방향을 결정하여 2개의 적층들을 갖는 해석 모델을 만들었다. 이후 구조해석을 진행하였다.

종류가 다른 부직포가 삽입된 하이브리드 복합재료의 층간파괴인성 : Part I-Mode I (Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Kinds of Non-Woven Tissues : Part I-Mode I)

  • 정종설;정성균
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.497-502
    • /
    • 2013
  • 본 논문에서는 종류가 다른 부직포가 삽입된 하이브리드 복합재료의 Mode I 층간파괴인성에 관한 연구를 수행하였다. Mode I 층간파괴인성값($J/m^2$)은 DCB실험에 의하여 얻어졌으며, 부직포를 삽입하지 않은 시편과 3종류의 부직포(8 $g/m^2$의 탄소부직포, 10 $g/m^2$의 유리부직포, 8 $g/m^2$의 폴리에스테르부직포)가 각각 삽입된 시험편에 대하여 실험을 수행하였다. 각 시험편들에 대한 Mode I 층간파괴인성값은 부직포를 삽입하지 않은 시편을 기준으로 탄소부직포를 삽입한 시편은 6.3% 감소하였고, 유리부직포를 삽입한 시편은 약 11.4% 감소한 반면 폴리에스테르부직포를 삽입한 시편은 약 69.4% 증가하였다. 폴리에스테르부직포는 탄소부직포에 비해 저렴하며 가볍고, Mode I 층간파괴인성값을 크게 증가시킴을 알 수 있었다.

Flexural behavior of sandwich beams with novel triaxially woven fabric composite skins

  • Al-Fasih, M.Y.;Kueh, A.B.H.;Ibrahim, M.H.W.
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.299-308
    • /
    • 2020
  • This study aims to carry out the experimental and numerical investigation on the flexural behavior of sandwich honeycomb composite (SHC) beams reinforced with novel triaxially woven fabric composite skins. Different stacking sequences of the carbon fiber reinforcement polymer (CFRP) laminate; i.e., 0°-direction of TW (TW0), 0°-direction of UD (UD0), and 90°-direction of UD (UD90) were studied, from which the flexural behavior of SHC beam behaviors reinforced with TW0/UD0 or TW0/UD90 novel laminated skins were compared with those reinforced with UD0/90 conventional laminated skins under four-point loading. Generally, TW0/UD0 SHC beams displayed the same flexural stiffness as UD0/90 SHC beams in terms of load-deflection relationships. In contrast, TW0/UD90 SHC beams showed a 70% lower efficiency than those of UD0/90 SHC. Hence, the TW0/UD0 laminate arrangement is more effective with a mass reduction of 39% compared with UD0/90 for SHC beams, although their stiffness and shear strength are practically identical.

The effect of MWCNTs on the mechanical properties of woven Kevlar/epoxy composites

  • Taraghi, Iman;Fereidoon, Abdolhossein;Mohyeddin, Ali
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.825-834
    • /
    • 2014
  • This manuscript presents an experimental investigation on the effect of Multi-walled carbon nanotubes (MWCNTs) addition on the tensile, flexural and impact properties of woven Kevlar fabric reinforced epoxy composites. MWCNTs were dispersed in the epoxy resin by sonication technique and the samples were fabricated by hand layup laminating procedure. Scanning electron microscopy (SEM) was used to characterize the microstructure of produced samples. The effects of adding small amounts (${\leq}1%$) of MWCNT on the tensile, flexural and impact (Izod) behaviors of laminated composites were analyzed. Results revealed that MWCNTs enhanced the Young's modulus up to 20%, bending modulus up to 40%, and impact strength up to 45% in comparison with woven Kevlar fabric/epoxy composites. It was found that the maximum improvements in mechanical properties were happened for 0.5 wt.% MWCNT.