• Title/Summary/Keyword: wound assay

Search Result 226, Processing Time 0.025 seconds

The Effects of Gokgisaeng on Anti-inflammation and Rat C6 Glioma Cell Migration (곡기생(槲寄生)의 항염증 효능 및 암세포 이주저해에 미치는 영향)

  • Kim, Hyun-Young;Jang, Soo-Young;Jeong, Ji-Cheon;Shin, Hyeon-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.34 no.1
    • /
    • pp.31-45
    • /
    • 2013
  • Objectives : Gokgisaeng (Korean mistletoe) is used for the treatment of inflammatory and cancer diseases in traditional Korean medicine and its major component lectins have been reported to induce nitric oxide (NO) in RAW 264.7 macrophages, and also induce apoptosis of various types of cancer cells, although its modulatory effects on cancer cell migration and macrophage activation is poorly understood. The aim of this study is to clarify molecular mechanisms of action responsible for the anti-inflammatory and antitumor migration potentials of Korean mistletoe extract (KME). Methods : We investigated the anti-inflammatory activity of KME on NO production and inducible nitric oxide synthase (iNOS) expression by lipopolysaccharide (LPS) in both RAW 264.7 macrophages and rat C6 glioma cells, and also evaluated inhibitory efficacy on glioma cell growth and migration. For assessment, XTT assay, nitrite assay, RT-PCR, scratch-wound and Boyden chamber assay, and western blot analysis were performed. Results : Previously reported, unlike the efficacy of Gokgisaeng lectin, KME inhibited NO production and iNOS expression, and suppressed pro-inflammatory mediators including IL-$1{\beta}$, IL-6, COX-2, iNOS in LPS-stimulated RAW 264.7 cells. Furthermore, KME suppressed tumor cell growth and migration, and it also inhibited LPS-induced NO release and iNOS activation by down-regulating expression of protein kinase C (PKC) and phosphorylation of ERK in C6 glioma cells. Conclusions : Our research findings provide evidence that KME can play a significant role in blocking pro-inflammatory reaction and malignant progression of tumors through the suppression of NO/iNOS by down-regulating of inflammatory signaling pathways, PKC/ERK.

The Influence of Bcl-3 Expression on Cell Migration and Chemosensitivity of Gastric Cancer Cells via Regulating Hypoxia-Induced Protective Autophagy

  • Hu, Lin;Bai, Zhigang;Ma, Xuemei;Bai, Nan;Zhang, Zhongtao
    • Journal of Gastric Cancer
    • /
    • v.20 no.1
    • /
    • pp.95-105
    • /
    • 2020
  • Purpose: Gastric cancer is a highly metastatic malignant tumor, often characterized by chemoresistance and high mortality. In the present study, we aimed to investigate the role of B-cell lymphoma 3 (Bcl-3) protein on cell migration and chemosensitivity of gastric cancer. Materials and Methods: The gastric cancer cell lines, AGS and NCI-N87, were used for the in vitro studies and the in vivo studies were performed using BALB/c nude mice. Western blotting, wound healing assay, Cell Counting Kit-8 assay, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to evaluate the role of Bcl-3 in gastric cancer. Results: We found that the protein expression of hypoxia (HYP)-inducible factor-1α and Bcl-3 were markedly upregulated under hypoxic conditions in both AGS and NCI-N87 cells in a time-dependent manner. Interestingly, small interfering RNA-mediated knockdown of Bcl-3 expression affected the migration and chemosensitivity of the gastric cancer cells. AGS and NCI-N87 cells transfected with si-RNA-Bcl-3 (si-Bcl-3) showed significantly reduced migratory ability and increased chemosensitivity to oxaliplatin, 5-fluorouracil, and irinotecan. In addition, si-Bcl-3 restored the autophagy induced by HYP. Further, the protective role of si-Bcl-3 on the gastric cancer cells could be reversed by the autophagy inducer, rapamycin. Importantly, the in vivo xenograft tumor experiments showed similar results. Conclusions: Our present study reveals that Bcl-3 knockdown inhibits cell migration and chemoresistance of gastric cancer cells through restoring HYP-induced autophagy.

Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells

  • Kim, Hyuck;Roh, Hyo Sun;Kim, Jai Eun;Park, Sun Dong;Park, Won Hwan;Moon, Jin-Young
    • Nutrition Research and Practice
    • /
    • v.10 no.3
    • /
    • pp.259-264
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Stromal cell-derived growth factor 1 (SDF-1), also known as chemokine ligand 12, and chemokine receptor type 4 are involved in cancer cell migration. Compound K (CK), a metabolite of protopanaxadiol-type ginsenoside by gut microbiota, is reported to have therapeutic potential in cancer therapy. However, the inhibitory effect of CK on SDF-1 pathway-induced migration of glioma has not yet been established. MATERIALS/METHODS: Cytotoxicity of CK in C6 glioma cells was determined using an EZ-Cytox cell viability assay kit. Cell migration was tested using the wound healing and Boyden chamber assay. Phosphorylation levels of protein kinase C $(PKC){\alpha}$ and extracellular signal-regulated kinase (ERK) were measured by western blot assay, and matrix metallopeptidases (MMP) were measured by gelatin-zymography analysis. RESULTS: CK significantly reduced the phosphorylation of $PKC{\alpha}$ and ERK1/2, expression of MMP9 and MMP2, and inhibited the migration of C6 glioma cells under SDF-1-stimulated conditions. CONCLUSIONS: CK is a cell migration inhibitor that inhibits C6 glioma cell migration by regulating its downstream signaling molecules including $PKC{\alpha}$, ERK1/2, and MMPs.

The effect of yacon (Samallanthus sonchifolius) ethanol extract on cell proliferation and migration of C6 glioma cells stimulated with fetal bovine serum

  • Lee, Kang Pa;Choi, Nan Hee;Kim, Jin Teak;Park, In-Sik
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.256-261
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Yacon (Samallanthus sonchifolius), a common edible plant grown throughout the world, is well known for its antidiabetic properties. It is also known to have several other pharmacological properties including anti-inflammatory, anti-oxidant, anti-allergic, and anti-cancer effects. To date, the effect of yacon on gliomas has not been studied. In this study, we investigated the effects of yacon on the migration and proliferation of C6 glioma cells stimulated by fetal bovine serum (FBS). MATERIALS/METHODS: Cell growth and proliferation were determined by evaluating cell viability using an EZ-Cytox Cell Viability Assay Kit. FBS-induced migration of C6 glioma cells was evaluated by performing the scratch wound healing assay and the Boyden chamber assay. We also used western blot analysis to determine the expression levels of extracellular signal-regulated kinase 1/2 (ERK1/2), a major regulator of migration and proliferation of glioma cells. Matrix metallopeptidase (MMP) 9 and TIMP-1 levels were measured by performing reverse transcription PCR. RESULTS: Yacon ($300{\mu}g/mL$) reduced both the FBS-induced proliferation of C6 glioma cells and the dose-dependent migration of the FBS-stimulated C6 cells. FBS-stimulated C6 glioma cells treated with yacon (200 and $300{\mu}g/mL$) showed reduced phosphorylation of ERK1/2 and inhibition of MMP 9 expression compared to those shown by the untreated FBS-stimulated C6 cells. In contrast, yacon (200 and $300{\mu}g/mL$) induced TIMP-1 expression. CONCLUSIONS: On the basis of these results, we suggest that yacon may exert an anti-cancer effect on FBS-stimulated C6 glioma cells by inhibiting their proliferation and migration. The most likely mechanism for this is down-regulation of ERK1/2 and MMP9 and up-regulation of TIMP-1 expression levels.

Effect of Korean Red Ginseng extract on colorectal lung metastasis through inhibiting the epithelial-mesenchymal transition via transforming growth factor-β1/Smad-signaling-mediated Snail/E-cadherin expression

  • Kee, Ji-Ye;Han, Yo-Han;Mun, Jeong-Geon;Park, Seong-Hwan;Jeon, Hee Dong;Hong, Seung-Heon
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.68-76
    • /
    • 2019
  • Background: In colorectal cancer (CRC), 40-60% of patients develop metastasis. The epithelial-mesenchymal transition (EMT) is a pivotal and intricate process that increases the metastatic potential of CRC. The aim of this study was to investigate the effect of Korean Red Ginseng extract (RGE) on colorectal metastasis through inhibition of EMT and the metastatic abilities of CRC cells. Methods: To investigate the effect of RGE on the metastatic phenotypes of CRC cells, CT26 and HT29 cells were evaluated by using an adhesion assay, a wound-healing assay, an invasion assay, zymography, and real-time reverse transcription-polymerase chain reaction. Western-blot analysis was conducted to elucidate the molecular mechanisms of RGE, which showed an inhibitory effect on the transforming growth factor-${\beta}1$ ($TGF-{\beta}1$)-induced EMT in HT29 cells. Additionally, the antimetastatic effect of RGE was evaluated in a mouse model of lung metastasis injected with CT26 cells. Results: RGE decreased the adhesion and migration ability of the CT26 cells and TGF-${\beta}1$-treated HT29 cells. The invasion ability was also reduced by RGE treatment through the inhibition of matrix metalloproteinase-9 expression and activity. Moreover, RGE suppressed the TGF-${\beta}1$-induced EMT via TGF-${\beta}1$/Smad-signaling-mediated Snail/E-cadherin expression in HT29 cells and lung tissue in CT26 tumor-bearing mice. Conclusion: Our results demonstrated that RGE inhibited colorectal lung metastasis through a reduction in metastatic phenotypes, such as migration, invasion, and the EMT of CRC cells.

Synergistic anticancer effects of timosaponin AIII and ginsenosides in MG63 human osteosarcoma cells

  • Jung, Okkeun;Lee, Sang Yeol
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.488-495
    • /
    • 2019
  • Background: Timosaponin AIII (TA3) is a steroidal saponin extracted from Anemarrhena asphodeloides. Here, we investigated the anticancer effects of TA3 in MG63 human osteosarcoma cells. TA3 attenuates migration and invasion of MG63 cells via regulations of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, which are involved with cancer metastasis in various cancer cells. TA3 reduced enzymatic activities and transcriptional expressions of MMP-2 and MMP-9 in MG63 cells. TA3 also inhibited Src, focal adhesion kinase, extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), p38, ${\beta}-catenin$, and cAMP response element binding signaling, which regulate migration and invasion of cells. TA3 induced apoptosis of MG63 cells via regulations of caspase-3, caspase-7, and poly(ADP-ribose) polymerase (PARP). Then, we tested several ginsenosides to be used in combination with TA3 for the synergistic anticancer effects. We found that ginsenosides Rb1 and Rc have synergistic effects on TA3-induced apoptosis in MG63 cells. Methods: We investigated the anticancer effects of TA3 and synergistic effects of various ginseng saponins on TA3-induced apoptosis in MG63 cells. To test antimetastatic effects, we performed wound healing migration assay, Boyden chamber invasion assays, gelatin zymography assay, and Western blot analysis. Annexin V/PI staining apoptosis assay was performed to determine the apoptotic effect of TA3 and ginsenosides. Results: TA3 attenuated migration and invasion of MG63 cells and induced apoptosis of MG63 cells. Ginsenosides Rb1 and Rc showed the synergistic effects on TA3-induced apoptosis in MG63 cells. Conclusions: The results strongly suggest that the combination of TA3 and the two ginsenosides Rb1 and Rc may be a strong candidate for the effective antiosteosarcoma agent.

Antiproliferative effect of Citrus junos extracts on A549 human non-small-cell lung cancer cells

  • Geum-Bi Ryu;Young-Ran Heo
    • Journal of Nutrition and Health
    • /
    • v.56 no.1
    • /
    • pp.12-23
    • /
    • 2023
  • Purpose: This study investigates the alterations in A549 human non-small-cell lung cancer (NSCLC) cells exposed to Citrus junos extract (CJE). We further examine the antiproliferative and apoptotic effects of CJE on NSCLC cells. Methods: Inhibition of proliferation was examined by applying the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) colorimetric assay on CJE-treated A549 NSCLC cells. The lactate dehydrogenase (LDH) assay was performed to measure the degree of toxicity of CJE on NSCLC cells. The effect on migratory proliferation was confirmed using the scratch wound healing assay. The antiproliferative effect of the CJE on human lung cancer cells was verified through morphological observation, fluorescence microscopy, and caspase-3 colorimetry. Results: Exposure of NSCLC cells to CJE resulted in a dose- and time-dependent decrease in cell activity and increased toxicity to the cells. In addition, microscopic observation revealed a reduced ability of the cancer cells to migrate and proliferate after exposure to the CJE, with simultaneous morphological apoptotic changes. Fluorescence staining and microscopic examination revealed that this death was a process of self-programmed cell death of NSCLC cells. Compared to unexposed NSCLC cells, the expression of caspase-3 was significantly increased in cells exposed to CJE. Conclusion: Exposure of A549 human NSCLC cells to CJE inhibits the proliferation, increases the cytotoxicity, and decreases the ability of cells to migrate and grow. Moreover, the expression of caspase-3 increases after CJE treatment, suggesting that the apoptosis of NSCLC cells is induced by a chain reaction initiated by caspase-3. These results indicate that Citrus junos is a potential therapeutic agent for human non-small-cell lung cancer.

Silymarin induces inhibition of growth and apoptosis through modulation of the MAPK signaling pathway in AGS human gastric cancer cells

  • SUNG-HYUN KIM;GANG-SIK CHOO;EUN-SEON YOO;JOONG-SEOK WOO;SO-HEE HAN;JAE-HAN LEE;JI-YOUN JUNG
    • Oncology Letters
    • /
    • v.42 no.5
    • /
    • pp.1904-1914
    • /
    • 2019
  • Apoptosis is regarded as a therapeutic target because it is typically disturbed in human cancer. Silymarin from milk thistle (Silybum marianum) has been reported to exhibit anticancer properties via regulation of apoptosis as well as anti-inflammatory, antioxidant and hepatoprotective effects. In the present study, the effects of silymarin on the inhibition of proliferation and apoptosis were examined in human gastric cancer cells. The viability of AGS human gastric cancer cells was assessed by MTT assay. The migration of AGS cells was investigated by wound healing assay. Silymarin was revealed to significantly decrease viability and migration of AGS cells in a concentration-dependent manner. In addition, the number of apoptotic bodies and the rate of apoptosis were increased in a dose-dependent manner as determined by DAPI staining and Annexin V/propidium iodide double staining. The changes in the expression of silymarin-induced apoptosis proteins were investigated in human gastric cancer cells by western blotting analysis. Silymarin increased the expression of Bax, phosphorylated (p)-JNK and p-p38, and cleaved poly-ADP ribose polymerase, and decreased the levels of Bcl-2 and p-ERK1/2 in a concentration-dependent manner. The in vivo tumor growth inhibitory effect of silymarin was investigated. Silymarin (100 mg/kg) significantly decreased the AGS tumor volume and increased apoptosis, as assessed by the TUNEL assay, confirming its tumor-inhibitory effect. Immunohistochemical staining revealed elevated expression of p-JNK and p-p38 as well as reduced expression of p-ERK1/2 associated with silymarin-treatment. Silymarin was revealed to reduce tumor growth through inhibition of p-ERK and activation of p-p38 and p-JNK in human gastric cancer cells. These results indicated that silymarin has potential for development as a cancer therapeutic due to its growth inhibitory effects and induction of apoptosis in human gastric cancer cells.

Anti-inflammatory and Anti-bacterial Effects of Aloe vera MAP against Multidrug-resistant Bacteria

  • Choi, Sang Hwa;Shin, Hea Soon
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.286-290
    • /
    • 2017
  • Multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa are highly dangerous nosocomial pathogens, cause the symptoms of skin infections, pressure sores, sepsis, blood stream and wound infections. Unfortunately, these pathogens are immune to the most common antibiotics, such as, carbapenem, aminoglycoside and fluoroquinolone. Therefore, it is imperative that new and effective antibiotics be developed. In the present study, the antimicrobial effects of Aloe vera MAP (modified Aloe polysaccharide) on Staphylococcus aureus and Bacillus subtilis, Escherichia coli and Enterobacter aerogenes, and clinical Pseudomonas aeruginosa and clinical Acinetobacter baumannii were comprehensibly investigated. Prior to the growth inhibition effect measurement and antibiotic disc diffusion assay on gram-positive and gram-negative bacteria and selected multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, antimicrobial resistance screening was performed for the multidrug-resistant bacteria obtained from clinical isolates. The results for showed the Aloe vera MAP had a concentration-dependent effect on all of examined bacteria, particularly on Pseudomonas aeruginosa. Anti-inflammatory and anti-oxidant experiments were also performed dose dependently effects to confirm the beneficial physiological effects of Aloe vera MAP.