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ABSTRACT

Purpose: Gastric cancer is a highly metastatic malignant tumor, often characterized by 
chemoresistance and high mortality. In the present study, we aimed to investigate the role of 
B-cell lymphoma 3 (Bcl-3) protein on cell migration and chemosensitivity of gastric cancer.
Materials and Methods: The gastric cancer cell lines, AGS and NCI-N87, were used for the 
in vitro studies and the in vivo studies were performed using BALB/c nude mice. Western 
blotting, wound healing assay, Cell Counting Kit-8 assay, immunohistochemistry, and 
terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to evaluate the 
role of Bcl-3 in gastric cancer.
Results: We found that the protein expression of hypoxia (HYP)-inducible factor-1α and Bcl-3 
were markedly upregulated under hypoxic conditions in both AGS and NCI-N87 cells in a 
time-dependent manner. Interestingly, small interfering RNA-mediated knockdown of Bcl-3 
expression affected the migration and chemosensitivity of the gastric cancer cells. AGS and 
NCI-N87 cells transfected with si-RNA-Bcl-3 (si-Bcl-3) showed significantly reduced migratory 
ability and increased chemosensitivity to oxaliplatin, 5-fluorouracil, and irinotecan. In addition, 
si-Bcl-3 restored the autophagy induced by HYP. Further, the protective role of si-Bcl-3 on the 
gastric cancer cells could be reversed by the autophagy inducer, rapamycin. Importantly, the in 
vivo xenograft tumor experiments showed similar results.
Conclusions: Our present study reveals that Bcl-3 knockdown inhibits cell migration and 
chemoresistance of gastric cancer cells through restoring HYP-induced autophagy.
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INTRODUCTION

Gastric cancer is a highly malignant tumor, which is characterized by metastasis and drug 
resistance [1]. Importantly, tissue hypoxia (HYP) caused by uncontrolled cell proliferation 
is the basic microenvironment of tumor. HYP promotes the expression of genes related 
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to angiogenesis, metastasis, glycolysis, and drug resistance through the effects of HYP-
inducible factor-1α (HIF-1α), thus endowing gastric cancer cells with stronger malignant 
properties [2].

B-cell lymphoma 3 (Bcl-3) belongs to the nuclear factor (NF)-κB protein family, and 
regulates the subcellular translocation and DNA-binding activity of NF-κB [3]. Bcl-3 acts 
as a transcriptional activator or inhibitor by forming heterologous complexes with p50 and 
p52 in the nucleus, and activates or inhibits the transcription of target genes [4], and plays 
a carcinogenic role in several cancers [5,6]. Several studies have demonstrated that the 
expression of Bcl-3 is upregulated in gastric cancer [7,8]. However, the precise role of Bcl-3 
in gastric cancer remains poorly understood, and especially the role and mechanism of Bcl-3 
in the autophagy and drug sensitivity of gastric cancer cells are largely unclear. Therefore, 
we aimed to understand the role of Bcl-3 on the migration and chemosensitivity of gastric 
cancer cells.

MATERIALS AND METHODS

Cell culture
Gastric cancer cell lines AGS and NCI-N87 were purchased from American Type Culture 
Collection (ATCC, Manassas, VA, USA) and cultured in RPMI-1640 GlutaMAX (Gibco, 
Thermo-Fisher Scientific, Waltham, MA, USA) with 10% fetal bovine serum and penicillin-
streptomycin (Sigma-Aldrich, St. Louis, MO, USA) at the concentration of 1% (v/v). All cells 
were kept in a hypoxic chamber (Invivo200, UK) in a humidified atmosphere with 5% CO2, 
1% O2, and 94% N2 and a constant temperature of 37˚C.

Western blot analysis
For total protein extraction from the tumor samples, the tissues were crushed on dry ice to 
protect from denaturation. Lysis buffer (2.5 μL/mg) was added to the sample and then the 
tissues were homogenized on ice and sonicated, before incubation for 30 minutes on ice. 
Protein extraction from the cancer cell lines was accomplished by adding lysis buffer and 
incubating on ice for 30 minutes following washing of the cells with phosphate-buffered 
saline (PBS). Protein samples from both the tissues and cells were then centrifuged at 
12,000 rpm for 10 minutes at 4°C. The supernatant was subsequently collected and stored 
at −80°C. Later, the protein concentrations were measured using a bicinchoninic acid kit 
(AR0146; Boster Biological Technology Co. Ltd., Wuhan, China). Equal amounts of each 
protein sample were electrophoresed on a sodium dodecyl sulfate polyacrylamide gel. Then 
the proteins were transferred onto a polyvinylidene fluoride membrane and the membranes 
were blocked with 5% skim non-fat milk solution in tris-buffered saline with Tween-20. 
The primary and secondary antibodies used were as follows: anti-HIF-1α antibody (1:1,000; 
ab51608, Abcam, Cambridge, MA, USA), anti-Bcl3 antibody (4 µg/mL; ab27780, Abcam), 
anti-Atg5 antibody (1:10,000; ab109490, Abcam), anti-LC3 A/B antibody (2 µg/mL; ab128025, 
Abcam), anti-vascular endothelial growth factor (VEGF) antibody, (1:5,000; ab32152, 
Abcam), anti-matrix metallopeptidase 9 (MMP-9) antibody, (1:1,000; ab38898, Abcam), 
anti-glyceraldehyde 3-phosphate dehydrogenase antibody (1:1,000; ab181602, Abcam), 
horseradish peroxidase-conjugated goad anti-rabbit (1:5,000; ab6721, Abcam), anti-mouse 
(1:5,000; ab6728, Abcam), and donkey anti-goat (1:5,000; ab6885, Abcam) antibodies. 
Protein bands were eventually visualized using an ECL kit (RPN2232, Amersham, Little 
Chalfont, UK). Quantification was conducted with the Image J software.
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Wound healing assay
AGS and NCI-N87 was seeded in six-well plates. The confluent cell monolayer was scraped 
with a pipette tip in the middle of the well. After 24 hours incubation, the cell migration 
was captured with a DM2500 bright field microscope (LEICA, Wetzlar, Germany) and the 
migration distance was measured using the ImageJ software.

Detection of cell proliferation
Cells (2×103/well) were seeded in six-well plates with 6 parallel wells set for each experimental 
group. Briefly, 6 hours post cell attachment was recorded as the 0 hour and the cells were 
cultured for 30 hours. Then 100 μL mixture of medium and Cell Counting Kit-8 reagent (9:1) 
was added, and the cells were incubated in the incubator with 5% CO2, 1% O2 and 94% N2 at 
37°C. A microplate reader was used to read the absorbance value at 450 nm.

Immunofluorescence staining for LC3
Immunofluorescence staining was used to confirm the expression of LC3 in the cells. Cells 
were cultured in different conditions for 48 hours. Then, the cells were washed with PBS 
and fixed for 20 minutes at 25°C with 4% paraformaldehyde. The cells were permeabilized 
with 0.4% TritonX-100 for 10 minutes, washed with PBS for thrice and then blocked with 
2% bovine serum albumin in PBS for 1 hour at 37°C. Antibodies against LC3 (in 1% blocking 
solution) was added to the cells and incubated overnight at 4°C. After 5-min washes with PBS, 
fluorescein-conjugated secondary antibody was added (in 1% blocking solution) and the cells 
were incubated for 1 hour. Finally, the stained cells were mounted with DAPI (1 μg/mL for 
7–10 minutes) to stain the nuclei. Following 3 additional 10 minutes washes, the samples were 
examined and analyzed with a fluorescence microscope (Olympus, Tokyo, Japan)

Tumorigenicity experiments in nude mouse
BALB/c nude mice purchased from the Beijing Vital River Laboratory Animal Technology Co., 
Ltd. (Charles River Laboratories, Wilmington, MA, USA) were used for the tumorigenesis 
experiments. Female BALB/c (4 weeks old and weighing about 15 g) mice were used. Fifteen 
mice were separated into 5 groups. A total of 5×106 AGS cells (transfected with si-RNA-
Bcl-3 [si-Bcl-3] or not) resuspended in 200 μL PBS were injected subcutaneously into nude 
mice. Intraperitoneal injection of 5-fluorouracil (5-FU, 50mg/kg daily for 7 days)/rapamycin 
(Rapa) were given to mice. After a 30-day observation period, the experimental mice 
were euthanized and the tumors were dissected for further experiments. All the animal 
experiments procedures in this study were approved by the Animal Ethics Committee of 
Committee of the Beijing Friendship Hospital (BFH-20180306). All the animal protocols were 
conducted strictly in accordance with the guidelines of International Guiding Principles for 
Animal Research.

Immunohistochemistry
The paraffin-embedded tumor sections were incubated with anti-Ki67 (Abcam, Cambridge, 
UK). Immunohistochemistry was performed as previously described [9].

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay
TUNEL staining was performed to detect apoptotic cell death in situ in the tumors according 
to the manufacturer's instructions (TUNEL apoptosis detection kit: Upstate, Lake Placid, 
NY, USA). Relative TUNEL-positive rate is displayed as the ratio of brown staining within the 
nucleus of the apoptotic cells.
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Statistical analysis
In this study, data are expressed as mean±standard deviation, and paired t-test was 
performed for comparison with the control groups. All statistical calculations were 
performed using the SPSS10.0 (SPSS Inc., Chicago, IL, USA) software. A significant 
difference was determined by P-value <0.05 and P-value <0.01.

RESULTS

HYP induces the upregulation of HIF-1α and Bcl-3 protein in gastric cancer cells
HYP is a key feature in the microenvironment of solid tumors. Elevated level of HIF-1α is 
often found in solid tumors, which correlates with cancer-related death [2,10]. Therefore, 
we subjected the gastric cancer cell lines AGS and NCI-N87 to hypoxic conditions, and an 
in vitro HYP cell model was established to mimic the microenvironment in solid tumors. 
Cells were grouped into control, HYP 6 hours, HYP 12 hours, HYP 24 hours according to the 
HYP treatment duration. The HIF-1α and Bcl-3 protein levels were determined at different 
time points by western blot analysis. The results showed that HIF-1α and Bcl-3 protein levels 
gradually increased with increasing exposure to HYP (Fig. 1A and B), and differences between 
the groups were significant (P<0.05). The results indicate that expression of Bcl-3 is induced 
by HYP. The increase of Bcl-3 may be positively correlated with gastric cancer development.

Bcl-3 knockdown reduces the migration and increases the chemosensitivity 
of gastric cancer cells
To understand the mechanism of Bcl-3 in gastric cancer cells, si-Bcl-3 vectors were 
constructed to knockdown the expression of Bcl-3. As shown in Fig. 2A, the protein level 
of Bcl-3 in the 3 si-Bcl-3 (si-Bcl-3-1, si-Bcl-3-2, and si-Bcl-3-3) groups were significantly 
decreased compared to the control group (P<0.05), while the si-negative control (si-NC) 
group showed no obvious change compared to control group. These results confirm the 
knockdown efficacy of three si-Bcl-3 small interfering RNAs.
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Fig. 1. HYP induces HIF-1α and Bcl-3 protein in gastric cancer cells. (A) Relative expression of HIF-1α in AGS and 
NCI-N87 cells was analyzed by western blotting. (B) Relative expression of Bcl-3 in AGS and NCI-N87 cells was 
analyzed by western blotting. GAPDH was used as a loading control. 
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Cells were subsequently divided into 4 groups as follows: control, HYP, si-Bcl-3+HYP, and 
si-NC+HYP. Cell migration in the four groups was evaluated using wound healing assay. Cells 
in the HYP group showed increased migration rate compared to the control group (Fig. 2B, 
P<0.05), while cells in the si-Bcl-3+HYP group showed decreased migration rate compared 
to the HYP group (P<0.05). In addition, si-Bcl-3 significantly increased the chemosensitivity 
of gastric cancer cells to oxaliplatin (OXA), 5-FU, and irinotecan (IRI) compared to their 
treatment alone (Fig. 2C-E, P<0.05). These results suggest that Bcl-3 knockdown reduced the 
migration and increased the chemosensitivity of gastric cancer cells.

Bcl-3 knockdown decreases HYP-induced autophagy
To assess the effect of si-Bcl-3 on autophagy, autophagy-related proteins were analyzed 
following Bcl-3 knockdown. As shown in Fig. 3A and B, the protein level of HIF-1α was 
significantly increased following HYP, while the increase was inhibited by si-Bcl-3 in gastric 
cancer cells (P<0.05). As shown in Fig. 3A, C, and D, the protein level of Atg5 and LC3II 
were also induced by HYP and suppressed by si-Bcl-3. Interestingly, the protein expression 
level of Bcl-3 showed similar expression pattern as Atg5/LC3II (Fig. 3A and E). In addition, 
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the LC3 immunofluorescence assay further confirmed that si-Bcl-3 inhibited LC3 protein 
level induced by HYP (Fig. 3F and G, P<0.05). These results indicate that Bcl-3 knockdown 
decreases HYP-induced protective autophagy in gastric cancer cells.

To further emphasize that Bcl-3 knockdown suppresses migration and 5-FU resistance were 
mediated by autophagy, autophagy inducer Rapa was introduced. As shown in Fig. 4A, 
under hypoxic conditions, si-Bcl-3 clearly inhibited cell migration, while treatment with 
Rapa significantly increased cell migration. As expected, si-Bcl-3 reduced Rapa-induced cell 
migration. Moreover, under the hypoxic conditions, si-Bcl-3 significantly decreased resistance 
to 5-FU (Fig. 4B, P<0.05). In addition, si-Bcl-3 reduced the expression of Atg5 and LC3II. 
Further, si-Bcl-3 inhibited Rapa-induced Atg5 and LC3II expression (Fig. 4C-E, P<0.05). 
Taken together, these results suggest that under hypoxic conditions Bcl-3 knockdown reduces 
migration and 5-FU resistance of gastric cancer cells by decreasing autophagy.
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Bcl-3 knockdown regulates tumor growth through autophagy in vivo
To further clarify the role of Bcl-3 on migration and chemosensitivity of gastric cancer cells 
in vivo, a xenograft tumor model was constructed in nude mice. As depicted in Fig. 5A, 
compared to the control group, the tumor sizes in 5-FU+si-Bcl-3, 5-FU and 5-FU+si-Bcl-
3-NC groups were significantly decreased (P<0.05), while those in 5-FU+si-Bcl-3+Rapa 
showed minimal difference compared to the control group. Interestingly, compared to the 
5-FU group, 5-FU+si-Bcl-3 showed reduced tumor sizes (P<0.05). As shown in Fig. 5B-H, 
compared to the control group, the relative expression of Bcl-3, HIF-1α, VEGF, MMP-9, Atg5, 
and LC3II were clearly downregulated in the 5-FU+si-Bcl-3, 5-FU, and 5-FU+si-Bcl-3-NC 
group (P<0.05), while 5-FU+si-Bcl-3+Rapa group showed minimal difference compared to 
the control group. Moreover, compared with 5-FU group, the 5-FU+si-Bcl-3 group showed 
reduced expression of these proteins (P<0.05). In addition, compared to the control group, 
Ki67 expression was downregulated in 5-FU+si-Bcl-3, 5-FU, and 5-FU+si-Bcl-3-NC groups 
(Fig. 5I, P<0.05), but increased following Rapa treatment. Importantly, the apoptotic rates 
were increased in the 5-FU+si-Bcl-3, 5-FU, and 5-FU+si-Bcl-3-NC groups compared to the 
control group (Fig. 5J, P<0.05), but increased following Rapa treatment. These results 
indicate that knockdown of Bcl-3 suppresses the in vivo growth of gastric cancer through 
inhibiting autophagy.
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DISCUSSION

Gastric cancer is a leading cause of cancer-related deaths in China [11]. Despite the 
improvements in the treatment modalities in the recent years, gastric cancer-related relapse 
and death resulting from metastasis and chemoresistance greatly impede the effectiveness of 
chemotherapy. In this study, we demonstrated that Bcl-3 is an oncogene in gastric cancer. Bcl-3 
knockdown markedly reduced the migration and chemoresistance of gastric cancer cells. In 
addition, similar results were observed in xenograft tumors in vivo. Most importantly, these 
activities may be regulated by inhibiting protective autophagy in gastric cancer.

HYP is a key feature of almost all solid tumors. HYP may drive the cells to acquire more 
aggressive properties, such as increased cell migration, invasion, growth, metastasis [12], 
protective autophagy [13], and chemoresistance [14]. HIF-1 is an important transcriptional 
regulator that is essential in the cellular response to HYP by modulating hypoxic gene 
expression [15]. HIF-1 consists a HYP-sensitive subunit, HIF-1α and a constitutively expressed 
subunit, HIF-1β. Under normoxic conditions, HIF-1α is degraded through the recruitment 
of a ubiquitin-protein ligase. Whereas in hypoxic conditions, HIF-1α is activated through 
decreased hydroxylation by PHD [16]. In this study, HIF-1α was activated under the hypoxic 
conditions, but it was inactivated by Bcl-3 knockdown in both AGS and NCI-N87 cells, which 
suggests that Bcl-3 knockdown may help suppress the aggressive properties of gastric cancer 
cells through downregulating HIF-1α.

Bcl-3, a key regulator of NF-κB signaling, is believed to be an important oncogenic mediator 
in solid tumors [17]. Bcl-3 promotes several kinds of cancers including chronic lymphocytic 
leukemia, and solid tumors such as colorectal [5], breast [18], prostate [19], and cervical [20]. 
Moreover, Bcl-3 exhibits tumor-promoting capabilities through increasing proliferation, 
metastasis, and chemoresistance in several cancers [21,22]. A review of literature revealed 
four myocardial ischemia studies that focused on the relationship between Bcl-3 and HYP. 
As reported, upregulation of Bcl-3 could help H2C9 cells against myocardial ischemia [23]. 
However, whether Bcl-3 is induced by hypoxic environment in cancers remains unclear. It 
is reasonable to speculate that Bcl-3 is positively correlated with HYP in cells and that Bcl-3 
may help the cells survive under hypoxic conditions. In the present study, under the hypoxic 
conditions, knockdown of Bcl-3 impeded cell migration and increased chemosensitivity of 5-FU. 
Consistent with the previous studies, our results confirmed the tumor-promoting role of Bcl-3. 
Chemoresistance is a major cause of poor prognosis of gastric cancer. In this study, we studied 
the role of Bcl-3 during the treatment with OXA, 5-FU, and IRI. As predicted, knockdown of Bcl-3 
significantly enhanced the cancer cell killing effect of these chemotherapeutics drugs, which 
suggests that knockdown of Bcl-3 improved the chemosensitivity of gastric cancer cells.

Autophagy, a highly conserved lysosome-mediated protective cellular process reported to 
play a protective role in cancers [13]. Activation of autophagy is thought to facilitate the 
survival and development of tumors under stress like HYP, by providing nutrients, oxygen, 
and invasive channels to tumors under stress [24]. Mechanically, inhibition of autophagy 
reduced the survival and invasive ability of cancer cells under conditions of stress. The 
role of Bcl-3 on autophagy is quite unclear. A previous study reported that upregulation 
of Bcl-3 promoted the autophagy process in human T-cell leukemia virus, type 1-infected 
cells [25]. In the present study, autophagy was activated in gastric cancer cells under the 
hypoxic conditions and in tumors in vivo. Bcl-3 knockdown significantly reduced autophagy, 
which was inconsistent with the previous study [25]. Interestingly, Bcl-3 knockdown also 
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significantly reduced Rapa-induced autophagy. Thus, our study revealed that Bcl-3 may 
have a positive correlation with autophagy, and inhibiting Bcl-3 can decrease migration and 
chemoresistance of gastric cancer through suppressing autophagy in vitro and in vivo.

Taken together, Bcl-3 was upregulated in gastric cancer. Bcl-3 knockdown significantly 
decreased migration and chemoresistance of gastric cancer cells. Moreover, the underlying 
mechanism may inhibit HYP-induced autophagy in gastric cancer cells and tumor.
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