• Title/Summary/Keyword: worn surface

Search Result 288, Processing Time 0.028 seconds

A Study on the Method and Application of Shaft Repair using Directed Energy Deposition Process (직접식 에너지 용착 공정을 활용한 축 보수 방법 및 활용 사례 연구)

  • Lee, Yoon Sun;Lee, Min Kyu;Sung, Ji Hyun;Hong, Myeong Pyo;Son, Yong;An, Seouk;Jeong, Oe Cheol;Lee, Ho Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.1-10
    • /
    • 2021
  • Recently, the repair and recycling of damaged mechanical parts via metal additive manufacturing processes have been industrial points of interest. This is because the repair and recycling of damaged mechanical parts can reduce energy and resource consumption. The directed energy deposition(DED) process has various advantages such as the possibility of selective deposition, large building space, and a small heat-affected zone. Hence, it is a suitable process for repairing damaged mechanical parts. The shaft is a core component of various mechanical systems. Although there is a high demand for the repair of the shaft, it is difficult to repair with traditional welding processes because of the thermal deformation problem. The objective of this study is to propose a repair procedure for a damaged shaft using the DED process and discuss its applications. Three types of cases, including a small shaft with a damaged surface, a medium-size shaft with a worn bearing joint, and a large shaft with serious damage, were repaired using the proposed procedure. The microstructure and hardness were examined to discuss the characteristics of the repaired component. The efficiency of the repair of the damaged shaft is also discussed.

A Study on the Predictive Maintenance of 5 Axis CNC Machine Tools for Cutting of Large Aircraft Parts (대형 항공부품용 5축 가공기에서의 예측정비에 관한 연구)

  • Park, Chulsoon;Bae, Sungmoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.161-167
    • /
    • 2020
  • In the process of cutting large aircraft parts, the tool may be abnormally worn or damaged due to various factors such as mechanical vibration, disturbances such as chips, and physical properties of the workpiece, which may result in deterioration of the surface quality of the workpiece. Because workpieces used for large aircrafts parts are expensive and require strict processing quality, a maintenance plan is required to minimize the deterioration of the workpiece quality that can be caused by unexpected abnormalities of the tool and take maintenance measures at an earlier stage that does not adversely affect the machining. In this paper, we propose a method to indirectly monitor the tool condition that can affect the machining quality of large aircraft parts through real-time monitoring of the current signal applied to the spindle motor during machining by comparing whether the monitored current shows an abnormal pattern during actual machining by using this as a reference pattern. First, 30 types of tools are used for machining large aircraft parts, and three tools with relatively frequent breakages among these tools were selected as monitoring targets by reflecting the opinions of processing experts in the field. Second, when creating the CNC machining program, the M code, which is a CNC auxiliary function, is inserted at the starting and ending positions of the tool to be monitored using the editing tool, so that monitoring start and end times can be notified. Third, the monitoring program was run with the M code signal notified from the CNC controller by using the DAQ (Data Acquisition) device, and the machine learning algorithms for detecting abnormality of the current signal received in real time could be used to determine whether there was an abnormality. Fourth, through the implementation of the prototype system, the feasibility of the method proposed in this paper was shown and verified through an actual example.

Introduction to Research Trend of Real-Time Measurement for Wear of TBM Disc Cutter (TBM 디스크커터의 마모량 실시간 계측을 위한 연구현황)

  • Min-Sung, Park;Min-Seok, Ju;Min-Sung, Cho;Jun, Lee;Jung-Joo, Kim;Hoyoung, Jeong
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.478-490
    • /
    • 2022
  • TBM disc cutter, which is the main cutting tool of tunnel boring machine (TBM), is replaced when it is excessively worn during the boring process. Disc cutters are usually monitored by workers at cutterhead chamber, and they check the status and wear amount of cutters. Because cutterhead chamber is usually in dangerous circumstance due to high pressure and instability of excavation surface, the measurement by manpower occasionally results in inaccuracy of measurement result. In order to overcome the limitations, the real-time disc cutter monitoring techniques have been developed in some foreign countries. This paper collected the current status of disc cutter monitoring system from the literature. Several types of sensors are used to measure the cutter wear, and it is believed that the collected information can be useful reference when similar domestic technologies are developed in the future.

Identifiable life vest signal generator in case of marine accident (해양사고 시 식별 가능한 구명조끼용 신호발생 장치)

  • Bang, Gul-Won
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.317-322
    • /
    • 2022
  • In general, life jackets are worn by people in critical situations on the water to rise to the surface without falling into water, and life jackets simply serve to prevent sinking, but do not actively help rescue disaster areas in critical situations early. In order to solve this problem, a device that automatically generates a distress signal in an emergency situation was developed. When the survivor is in hand for a while, the distress signal generator is automatically separated from the life jacket, allowing information such as location values and other information to be transmitted wirelessly and a rescue signal using LED light. As a result of the experiment, when submerged in water, the life jacket and the distress signal generator were automatically separated, and the result of wireless transmission of the coordinate value of the location received by the GPS was confirmed. By using this, the location of the distress or missing person can be identified, which can be quickly replaced in case of an emergency

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

DENS INVAGINATUS AND TALON CUSP CO-OCCURING: REPORT OF THREE CASES (치내치를 동반한 탈론 교두: 증례보고)

  • Im, Sung-Ok;Lee, Sang-Ho;Lee, Nan-Young
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.4
    • /
    • pp.488-496
    • /
    • 2010
  • Dens evaginatus is a tooth with cylindrical enamel projection which forms a nodule on occlusal surface. It could be explained as outward overgrowth of inner enamel epithelium or localized hyperplasia of pulpal mesenchymal tissue during tooth development. A problem is that it is likely to be worn out or fractured by mastication ensuing pulpal inflammation. It is occasionally found on the lingual surface of upper anterior teeth as well, called talon cusp. Dens invaginatus is a tooth with deep lingual pit made by invagination of lingual enamel epithelium during tooth development while it is considered normal in terms of size and shape. Radiographically, a part of cervical enamel shows inward growth forming cavity and it is reasonable to say that the base is possibly open to pulpal cavity since they are very close. Talon cusp and dens invaginatus are relatively common abnormality of shape. However it becomes the opposite if the two exist in the same tooth. Once the talon cusp is broken by occlusal force or fissure between cusps is decayed, the complicated structure of canals makes the pulpal treatment difficult. Preventive treatments such as occlusal equilibrium and sealant, and regular oral examination should be preceded and thorough understanding of canal shape, using radiography, is required when pulpal treatment is necessary. This report is about a 9- year-old boy(lower left central incisor), a 8-year-old girl(upper right central incisor), and a 7-year-old boy(upper right central incisor), who have dens invaginatus and talon cusp in the same teeth. The first and the second patients are under pulpal treatments, and the last one is being observed showing no pathologic impressions.

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.

Effect of TESPT Silane Coupling Agent on Mechanical Properties of Precipitated Silica Filled NBR Compound for Oil Seal (TESPT 실란커플링제가 침전 실리카로 보강된 오일씰용 NBR복합소재의 기계적 물성에 미치는 영향)

  • Lee, Young-Seok;Hwang, Ki-Seob;Lee, Jong-Cheol;Kim, Tae-Geun;Ha, Ki-Ryong
    • Elastomers and Composites
    • /
    • v.46 no.1
    • /
    • pp.45-53
    • /
    • 2011
  • The effect of the silane coupling agent, bis(triethoxysilypropyl)tetrasulfide (TESPT), on mechanical properties of a silica-filled NBR compound for oilseal was investigated. Curing behavior and crosslinking density of the compounds were measured using ODR (oscillating disk rheometer) and swelling ratio in toluene. UTM (universal testing machine) and shore A hardness tester were used in order to study the characteristics of mechanical properties of original vulcanizates and aged ones with heated air and ASTM No. 3. oil. Recovery of elasticity which influences the performance and service life of oilseal was investigated by giving bending deformation to vulcanizates in aging condition. After bending aging test, recovery distance was measured and calculated angle of recovery from it. TR (temperature retraction) test was performed on these vulcanizates to determine the low temperature recovery behavior. Wear resistance was measured by Taber type abrasion tester. In addition, SEM was used to characterize the morphology of the worn surface of vulcanizates. The result showed that addition of TESPT into silica-filled compound improves not only compound flow-ability, interaction between NBR and silica and crosslinking density, but also hardness, 100% modulus, recovery of elasticity, wear resistance, heat resistance and ASTM No.3 oil resistance of vulcanizates.

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

MICROHARDNESS AND SURFACE ROUGHNESS OF SEALANT AND FLOWABLE COMPOSITE RESINS (치면열구전색제와 유동성 복합 레진의 미세 경도 및 표면 조도의 비교)

  • Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Seon-Mi;Choi, Ji-Eun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.3
    • /
    • pp.440-447
    • /
    • 2009
  • This study was performed to compare the wear resistance of sealant and flowable resins for analyzing the effect of flowable resin as a sealant in preventive resin restorations. Specimens were made and Vicker's hardness number and surface roughness were measured. SEM observations of the polished and abraded surfaces were established. Kruskal-Wallis rank test and Mann-Whitney U test at the significant level of ${\alpha}$=0.05 were used. The following results were obtained: 1. The microhardness was decreased among groups in following order: Z350 (3M ESPE, U.S.A), Estelite (Tokuyama Dental, Japan) and Ultraseal (Ultradent, U.S.A). There were significant differences in all groups (p<0.0001). 2. The surface roughness was decreased among groups in following order: Ultraseal XT plus, Palfique Estelite LV and Filtek Z350 flowable. However, there is no statistically significant differences in roughness among Estellite, Z350 and Ultraseal at the significance level of ${\alpha}$=0.05, with p=0.116 3. SEM observation of the unworn and worn surfaces revealed the qualitative differences in the wear appearance among groups. The results in this study indicate that flowable resin is better than sealant in aspect of physical properties.

  • PDF