• Title/Summary/Keyword: worn surface

Search Result 288, Processing Time 0.027 seconds

Friction Coefficient and Microstructure of Reaction-Bonded Silicon Carbide According to Sliding Conditons (반응소결 탄화규소의 접동조건에 따른 마찰계수 및 미세구조)

  • 김호균;김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.825-831
    • /
    • 1995
  • Reaction-bonded SiC-Si material was fabricated by infiltration of Si melt into a mixture of $\alpha$-SiC and carbon at 175$0^{\circ}C$ under the vacuum atmosphere. Wear properties were analyzed by ball-on-plate wear tester, changing loading weight, sliding speed, sliding time and atmosphere, Results showed that the friction coefficient was decreased with increasing load and sliding velocity. The lowest friction coefficient of 0.05 was obtained under an oil atmosphere. The analysis of the wear surface indicated that the areas wehre particles were pulled out and where free silicon particles worn out preferentially serve as liquid reservoirs to decrease the wear resistance.

  • PDF

An Investigation of Microstructural Evolution and Sliding Wear Behavior of Ultra-Fine Grained 5052 Aluminum Alloy Fabricated by an Accumulative Roll-Bonding Process (누적압연접합에 의한 5052 Al 합금의 결정립 미세화와 기계적 특성 연구)

  • 하종수;강석하;김용석
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.376-381
    • /
    • 2003
  • Microstructural evolution and dry sliding wear behavior of ultra-fine grained 5052 Al alloy obtained by an accumulative roll-bonding process have been investigated. After 7 ARB cycles, ultra-fine grains with a large misorientation between neighboring grains were obtained. The grain size was about 0.2 $\mu$m. The hardness, tensile and yield strengths of the ultra-fine grained alloy increased as the amount of accumulated strain increased with the ARB cycles. Sliding wear tests of the ultra-fine grained 5052 Al alloy were conducted at room temperature. Wear rate of the ultra-fine grained alloy increased in spite of the increase of hardness. Surface of the worn specimens were examined with SEM to investigate wear mechanism of the ultra-fine grained alloy.

Tribological Behavior of Electro-pressure Sintered Cobalt-Iron, Cobalt-Nickel, and Cobalt-Iron-Nickel Compacts

  • Kim, Yong-Suk;Kwon, Yong-Jin;Kim, Tai-Woong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1124-1125
    • /
    • 2006
  • Dry sliding wear behavior of electro-pressure sintered Co-Fe, Co-Ni and Co-Fe-Ni compacts was investigated. Pin-on-disk wear tests were performed on the sintered compacts disk specimens against alumina $(Al_2O_3)$ and silica $(SiO_2)$ ball counterparts at various loads ranging from 3N to 12N. Two sliding speeds of 0.1m/sec and 0.2m/sec and a fixed sliding distance of 1,000m were employed. Worn surfaces and cross sections of them were examined by a scanning electron microscopy, and wear mechanism of the compacts was investigated. Effects of the oxide layer that was formed on wearing surface of the compacts on the wear were also studied.

  • PDF

Effect of Impact Energy on the Impact-Wear Properties of High Manganese Steels in Acidic Corrosive Conditions

  • Wang, Kai;Du, Xiao-Dong;Wu, Kai;Youn, Kuk-Tae;Lee, Chan Gyu;Koo, Bon Heun
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.362-369
    • /
    • 2008
  • The impact abrasion behavior of high manganese steel is investigated under three kinds of impact energy in acid hematite ore slurry by using a modified MLD-10 impact abrasion tester. Through the SEM observation of the worn surface and the optical metallographic analysis of the cross-sectional samples, the corrosive impact abrasion mechanisms of the steel under different impact energies are studied. In acid-hematite slurry, the variations of impact energies would result in synchronous transformation of the impact abrasion properties and mechanisms of the high manganese steel in the corrosive condition, as led different corrosive impact abrasion mechanism under different impact energies.

Properties of friction material for impact driven piezoelectric actuator (Impact 구동 방식 압전 엑츄에이터의 마찰재 특성)

  • Lee, Dong-Kyun;Kang, Byung-Woo;Moon, Jae-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.285-285
    • /
    • 2007
  • Friction material in a piezoelectric system is a important part to affect to moving performance. In this paper, alumina ceramics $(AlO_2)$, silicon carbide (SiC), high speed steel and super-hard alloy (WC, Tungsten Carbide) having a hardness knoop of 1000 to 2000 $kg/mm^2$ were tested as a friction material of AF module. Even though $AlO_2$, SiC and high speed steel were a high-hardness material, $AlO_2$ and SiC were worn by a rough surface, and SiC is rusted in humidity condition. AF module using super-hard alloy has showed a stable moving performance in life time test.

  • PDF

Friction and Wear of Nano-Sized Silica Filled Epoxy Composites

  • Kim, Jae-Dong;Kim, Yeong-Sik;Kim, Hyung-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.174-179
    • /
    • 2014
  • The wear behavior of epoxy matrix composites filled with nano sized silica particles is discussed in this paper. Especially, the variation of the coefficient of friction and the specific wear rate under the various applied load and sliding velocity were investigated for these materials. Wear tests of pin-on-disc mode were carried out and followed by scanning electron microscope observations. The presence of silica filler in epoxy composites was demonstrated significant influence on the friction and wear behavior of epoxy nanocomposites. With the incorporation of silica filler into the epoxy matrix, reduction of the coefficient of friction and specific wear rate were identified. Wear mechanism was discussed by analyzing the worn surface by scanning electron microscope as well.

Friction and Wear Behaviors of Conventional Composite Resins (재래형 콤포짓트 레진의 마찰 . 마멸거동)

  • 임정일;서세광;김교한;김석삼
    • Tribology and Lubricants
    • /
    • v.16 no.3
    • /
    • pp.166-172
    • /
    • 2000
  • The friction and wear characteristics of dental composite resins such as Charisma, Elitefil, TPH and Veridonfil were investigated. Furthermore, The surface characteristics examination, the analysis of contents of filler, Victors hardness and fracture toughness measurement of composite resins were preformed. The wear test applied ball to move reciprocationally on flat wear tester at room temperature. Microstructure of surfaces and worn surfaces were observed by SEM. Experimental results indicate that the friction coefficient of TPH was quite low, and the wear resistance of TPH was better than that of Charisma, Elitefil or Veridonfil at the same condition. The main wear mechanism was found to be plastic flow and abrasive wear by failure of filler's bond to the matrix.

Tribological Properties of the Aluminum Short fiber and glass fiber Reinforced Tin-Bronze Matrix Composites (알루미나 단섬유 및 유리섬유 보강 청동기지 복합재의 마모특성 연구)

  • 황순홍;안병길;이범주;최웅수;허무영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.13-19
    • /
    • 1996
  • The tribological properties of the aluminum short fiber and glass fiber reinforced tin-bronze matrix composites manufactured by vacuum hot pressing was studied. The effect of the composition and the relative density on the wear properties was examined by a reciprocal type tribo-test machine. The results were discussed by the observation of the microstructure of sintered specimen and worn surface observation using SEM and EDS. Addition of the fibers led to the wear resistance since the metal matrix was reinforced by the fibers. The reinforcement of the fiber seemed to be stronger as the distribution of the fibers was more uniform. Graphite also reduce the wear loss. The pores in the sintered composites seemed to play an important role to improve the wear resistance since the pores provide the places where the solid lubricants locate.

  • PDF

Study on shear bond strength of various composite resins to artificial denture teeth (수복용 레진과 인공치아간의 결합강도 연구)

  • Park, Kyung-Mo
    • Journal of Technologic Dentistry
    • /
    • v.36 no.3
    • /
    • pp.171-177
    • /
    • 2014
  • Purpose: The dental medicine has been preparing the custom-made service to meet the requirements of the aged society, while the average span of human life is growing more and more, and the full denture is a representative of them. It is causing great concern in these atmosphere of society, and demands for it are expected to increase. The full denture is a uniform combination of denture base and artificial teeth using polymerization, and is most influenced by change of physical properties of denture base and bonding strength with artificial teeth. Methods: In this study, the samples were made of composite resin combined with occlusion surface of artificial teeth undergone mechanically surface treatment to evaluate the bonding strength of composite resin for repairing artificial teeth. The resin teeth used in this study are 3 types artificial teeth. And 3 types of composite resins are used that are various polymerization resin. The shear strength of composite resins made in various polymerization ways to resin teeth was measured to evaluate bonding strength of artificial teeth to each composite resins. Results: Surface hardness's results on Trubyte Biotone(74.58Hv), Biotone IPN(70.06Hv), Endura Posterio (64.48Hv). Results of bonding strength of artificial teeth to composite resins on ES samples(8.73Mpa), IF(4.37Mpa) and IZ(3.84Mpa). Conclusion: 1. The Trubyte Biotone(74.58Hv) was first, followed by Biotone IPN(70.06Hv), and Endura Posterio(64.48Hv) in surface hardness's results of worn sides using hardness test. 2. The ES samples(8.73Mpa) showed significant differences with IF(4.37Mpa) and IZ(3.84Mpa) (p<0.05), but not other samples(p>0.05) in results of bonding strength of artificial teeth to composite resins.

Correlation between microhardness and wear resistance of dental alloys against monolithic zirconia

  • Cha, Min-Sang;Lee, Sang-Woon;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.127-135
    • /
    • 2021
  • Purpose. The aim of this study is to compare the hardness according to the conditions of metal alloys. Moreover, the correlation between the cast crown hardness before and after wear testing and the degree of wear for each dental alloy was assessed. Materials and Methods. Cast crowns of three metal alloys (Co-Cr, gold, and Ni-Cr alloys) opposing smooth-surface monolithic zirconia were used. The Vickers microhardness of the ingot (which did not undergo wear testing) and the cast crown before and after wear testing were measured for each alloy. Two-way ANOVA and Scheffé tests were used to compare the measured hardness values. Moreover, the Pearson correlation coefficient was used to evaluate the relationship between the surface hardness and the wear of the cast crown (α=.05). Results. There was no significant difference in the hardness before and after wear testing for the gold alloy (P>.05); however, the hardness of the worn surface of the cast crown increased compared to that of the cast crown before the wear tests of Ni-Cr and Co-Cr alloys (P<.05). Furthermore, there was no correlation between the wear and hardness of the cast crown before and after wear testing for all three metal alloys (P>.05). Conclusion. There was a significant difference in hardness between dental alloys under the same conditions. No correlation existed between the surface hardness of the cast crown before and after wear testing and the wear of the cast crown.