• 제목/요약/키워드: workspace

검색결과 481건 처리시간 0.023초

기구학적 커플링으로 구성된 3자유도 병렬 메커니즘 해석 및 설계 (Analysis and Design of 3-DOF Parallel Mechanism Based on Kinematic Couplings)

  • 왕위준;한창수
    • 한국생산제조학회지
    • /
    • 제21권3호
    • /
    • pp.479-486
    • /
    • 2012
  • This paper presents a high-speed automatic micro-alignment system that is a part of an inspection machine for small-sized molded lenses of mobile phones, palm-top computers, and so on. This work was motivated by the shortcomings of existing highest-grade commercial machine. A simple tip/tilt/Z parallel mechanism is designed based on kinematic couplings, which is a 3-degree-of-freedom (3-DOF) moderate-cost alignment stage. It is used to automatically adjust the posture of each lens on the tray, which is impossible by the conventional instrument. Amplified piezoelectric actuators are used to ensure the accuracy and dynamic response. Forward kinematic analysis and simulation show that the parasitic motion is small enough compared to the actuator stroke. From the workspace analysis of the moving platform, it is clear that the output motion range satisfies the design requirements.

다축 동기 제어 방법 기반의 산업용 고속 병렬로봇 제어 (Synchronization Error-based Control Approach for an Industrial High-speed Parallel Robot)

  • 도현민;김병인;박찬훈;경진호
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.354-361
    • /
    • 2016
  • Parallel robots are usually used for performing pick-and-place motion to increase productivity in high-speed environments. The present study proposes a high-speed parallel robot and a control approach to improve the tracking performance for the purpose of handling a solar cell. However, the target processes are not limited to the solar cell-handling field. Therefore, a delta-type parallel manipulator is designed, and a ball joint structure is specifically proposed to increase the allowed angle that would meet the required workspace. A control algorithm considering the synchronization between multiple joints in a closed-chain mechanism is also suggested to improve the tracking performance, where the tracking and synchronization errors are simultaneously considered. In addition, a prototype machine with the proposed ball joint is implemented. A satisfactory tracking performance is achieved by applying the proposed control algorithm, with a cycle time of 0.3 s for a 0.1 kg payload.

상지 재활을 위한 3-D 로봇 시스템의 혼합 위치/힘 제어 (Hybrid Position/Force Control of a 3-D Rehabilitation Robot System for Upper Extremities)

  • 이수한;신규현
    • 한국정밀공학회지
    • /
    • 제28권5호
    • /
    • pp.599-605
    • /
    • 2011
  • A 3-D rehabilitation robot system is developed. The robot system is for the rehabilitation of upper extremities, especially the shoulder and elbow joints, and has 3-D workspace for occupational therapy to recover physical functions in activities of daily living(ADL). The rehabilitation robot system has 1 DOF in horizontal rotational motion and 2 DOF in vertical rotational motion, where all actuators are set on the ground. Parallelogram linkage mechanisms lower the equivalent inertia of the control elements as well as control forces. Also the mechanisms have high mechanical rigidity for the end effector and the handle. In this paper, a hybrid position/force controller is used for controlling positions and forces simultaneously The controller is tuned according to the robot posture. The active motion modes for rehabilitation program consist of active-resisted motion mode and active-free motion mode. The results of the experiments show that the proposed motion modes provide the intended forces effectively.

힘과 위치를 동시에 고려한 양팔 물체 조작 솜씨의 모방학습 (Imitation Learning of Bimanual Manipulation Skills Considering Both Position and Force Trajectory)

  • 권우영;하대근;서일홍
    • 로봇학회논문지
    • /
    • 제8권1호
    • /
    • pp.20-28
    • /
    • 2013
  • Large workspace and strong grasping force are required when a robot manipulates big and/or heavy objects. In that situation, bimanual manipulation is more useful than unimanual manipulation. However, the control of both hands to manipulate an object requires a more complex model compared to unimanual manipulation. Learning by human demonstration is a useful technique for a robot to learn a model. In this paper, we propose an imitation learning method of bimanual object manipulation by human demonstrations. For robust imitation of bimanual object manipulation, movement trajectories of two hands are encoded as a movement trajectory of the object and a force trajectory to grasp the object. The movement trajectory of the object is modeled by using the framework of dynamic movement primitives, which represent demonstrated movements with a set of goal-directed dynamic equations. The force trajectory to grasp an object is also modeled as a dynamic equation with an adjustable force term. These equations have an adjustable force term, where locally weighted regression and multiple linear regression methods are employed, to imitate complex non-linear movements of human demonstrations. In order to show the effectiveness our proposed method, a movement skill of pick-and-place in simulation environment is shown.

듀얼스테이지를 이용한 고정밀도의 하이브리드 밀링머신 (High Precision Hybrid Milling Machine Using Dual-Stage)

  • 정병묵;여인주;고태조;이천
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.39-46
    • /
    • 2008
  • High precision machining technology has become one of the important parts in the development of a precision machine. Such a machine requires high speed on a large workspace as well as high precision positioning. For machining systems having a long stroke with ultra precision, a dual-stage system including a global stage (coarse stage) and a micro stage (fine stage) is designed in this paper. Though linear motors have a long stroke and high precision feed drivers, they have some limitations for submicron positioning. Piezo-actuators with high precision also have severe disadvantage for the travel range, and the stroke is limited to a few microns. In the milling experiments, the positional accuracy has been readily achieved within 0.2 micron over the typical 20 mm stroke, and the path error over 2 micron was reduced within 0.2 micron. Therefore, this technique can be applied to develop high precision positioning and machining in the micro manufacturing and machining system.

Transfer Mode를 활용하는 포토몽타주제작기법 (Making Photomontage using Transfer Mode)

  • 윤영범;김성현
    • 한국콘텐츠학회논문지
    • /
    • 제13권7호
    • /
    • pp.102-109
    • /
    • 2013
  • 본 연구의 목적은 사진을 사실의 묘사와 재현에 국한하지 않고 상상력을 자유롭게 표현할 수 있는 미디어로서 새로운 가능성을 모색하고 일상의 경험을 창의적으로 표현하는 작업을 위한 기법의 구현에 있다. 포토몽타주 제작기법 연구를 위한 작품의 형성배경으로서 사진과 회화의 다원성 연구를 위한 픽토리얼리즘, 포토몽타주 기법을 탄생시킨 다다이즘에 대한 분석을 위한 문헌연구와 선행연구조사를 수행하였으며 새로운 시각적 표현 기법의 모색을 위한 작품제작을 병행하여 사진과 회화의 융합가능성을 고찰하였다. 연구 방법으로 기존의 포토몽타주 제작기법과의 차별성에 대하여 조사하고 Transfer Mode를 활용하는 이미지합성과 다중 레이어의 멀티이미지를 합성하는 포토몽타주 제작기법에 대하여 설명하고 영상을 구성하는 이미지 언어의 기능적인 측면에서 이미지를 활용하여 포토몽타주를 제작하였다.

휴머노이드 로봇의 입구 통로를 막고 있는 잔해 제거를 위한 역 기구학 제어와 자세 제어기 설계 (Removal of Debris Blocking an Entryway: Inverse Kinematic Control and Balancing Controller Design for Humanoid)

  • 이인호;김인혁;오준호
    • 제어로봇시스템학회논문지
    • /
    • 제20권10호
    • /
    • pp.1063-1066
    • /
    • 2014
  • The humanoid robot, DRC-HUBO is developed from the KHR (KAIST Humanoid Robot) series to meet the requirements of the DARPA Robotics Challenge. DARPA Robotics Challenge was a competition to develop semi-autonomous humanoid robot so that dispatched in dangerous environments in place of humans like the Fukushima nuclear accident. In this paper, we introduce DRCH-UBO briefly and a methodology to remove debris blocking an entryway. The methodology includes inverse kinematics for DRC-HUBO and stabilization controller based on ZMP. Proposed inverse kinematics is robust, and pelvis-related tasks improve the manipulability and workspace of the arms. The controller improves the damping characteristic of the system and mitigates the instability during removal of debris. For given position and orientation of the debris, DRC-HUBO generates motion to reach the debris and lift up while stabilizing itself. Many experimental results verify our proposed methodology.

建築 協業設計 시스템 구축을 위한 프로세스와 環境 試險에 관한 연구 (A Collaborative Design System in Architecture: defining the process and testing its system environment)

  • 김억;강명희;최진원;김성아
    • 한국CDE학회논문집
    • /
    • 제7권1호
    • /
    • pp.57-65
    • /
    • 2002
  • The purpose of this research is to develop a collaborative architectural design system. Design collaboration requires an extensive use of communication methods as well as the participation of various experts from different domains. Such facts address several issues when the Internet and digital media are able to create a completely new work environment. The building design process was studied, and possible modes of design collaboration were defined. A prototype system is being developed in accordance with the defined collaboration model. The system integrates a set of communication tools and web-based design media. Such media include a synchronous multi-user web CAD tool, a schematic 3D design tool, and a electronic whiteboard. A project database was designed in order to coordinate the project-wide communication which elaborates technologies such as web-based data access. In order to find out the effectiveness of the system, a usability test was performed both in quantitative and qualitative manner. The research will contribute to the development of world-wide design and construction collaboration through the Internet, which is becoming a mainstream building process model.

침입자 포위를 위한 군집 로봇의 분산 이동 알고리즘 (Distributed Moving Algorithm of Swarm Robots to Enclose an Invader)

  • 이희재;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.224-229
    • /
    • 2009
  • 군집 로봇(swarm robots)이 같은 작업 환경에 존재할 때, 우리는 어떤 임무를 수행하기 위한 로봇들을 먼저 결정해야 한다. 이런 로봇들의 협조 행동을 제어하기 위한 연구들이 많이 있었다. 이런 군집 로봇 시스템을 사용함으로써 얻는 이점은 협조 행동을 통해서 임무 수행의 적응성과 융통성이 증가하는 특성이라 할 수 있다. 침입자가 발견 되었을 때 군집 로봇은 효율적인 포위를 위해서 침입자의 이동 경로를 예상하면서 다양한 경로를 통해서 침입자에게 접근, 포위해야 한다. 본논문에서는 2차원 맵에서의 군집 로봇의 효율적인 포위 방법과 분산 이동 알고리즘을 제안한다.

두 개의 산업용 양팔로봇간의 실시간 동기화 방법 (Real-time Synchronization Between Two Industrial Dual-arm Robots)

  • 최태용;경진호;도현민;박찬훈;박동일
    • 제어로봇시스템학회논문지
    • /
    • 제22권12호
    • /
    • pp.1027-1033
    • /
    • 2016
  • There is an increasing need for manufacturing systems to produce batches in small quantities. Such manufacturing systems are significantly difficult to develop with conventional automation equipment. Recently, several research groups have applied industrial dual-arm robots to cell production lines. A synchronization method for robots is necessary for the cell production process when robots work in a shared workspace. Conventional automation factories do not need this method because the main control system operates all of the machines or robots. However, our intended application for the developed robot is in small manufacturing environments that cannot install an expensive main control system. We propose an inexpensive and high-performance method with a simple digital in/out channel using a real-time communication protocol. The developed method was validated in a pilot production line for cellular phone packing.