• Title/Summary/Keyword: workpiece

Search Result 1,346, Processing Time 0.024 seconds

A Study on the Geometric Error Prediction of Workpiece in Turning (선삭가공에서 공작물의 형상오차 예측에 관한 연구)

  • Lee, Mun-Jae;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.9-15
    • /
    • 2011
  • Any relative deformation between the cutting tool and the workpiece at machining point results directly in geometric and dimensional errors. The sources of relative deformations between the cutting tool and the workpiece at the contact point may be due to vibration, thermal deformation and cutting forces. In this paper, geometric error prediction of workpiece in turning has been investigated. To reach this goal, turning experiments are carried out according to selected cutting conditions. The variable cutting conditions are cutting speed, depth of cut and feed rate. The results will be useful as a guidance to select cutting conditions to improve the geometrical accuracy.

A Study on the Flexible Disk Grinding Process Parameter Prediction Using Neural Network (신경망을 이용한 유연성 디스크 연삭가공공정 인자 예측에 관한 연구)

  • Yoo, Song-Min
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.123-130
    • /
    • 2008
  • In order to clarify detailed mechanism of the flexible disk grinding system, workpiece length was introduced and its performance was evaluated. Flat zone ratio increased as the workpiece length increased. Increasing wheel speed and depth of cut also enhanced process performance by producing larger flat zone ratio. Neural network system was successfully applied to predict minimum depth of engagement and flat zone ratio. An additional input parameter as workpiece length to the neural network system enhanced the prediction performance by reducing error rate. By rearranging the Input combinations to the network, the workpiece length was precisely predicted with the prediction error rate lower than 2.8% depending on the network structure.

A study on Linear Pattern Fabrication of Plate-type PC (PC소재의 선형 패턴 제작에 관한 연구)

  • Joung, Y.N.;Lee, E.K.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.277-280
    • /
    • 2008
  • Recently, a demand of nano/micro patterned polymer for display or biochip has been rising. Then many studies have been carried out. Nano/micro-embossing is a deformation process where the workpiece materials is heated to permit easier material flow and then forced over a planar patterned tool. In this work, the hot-emboss process is performed with different forming conditions; forming temperature, load, press hold time, to get the proper condition for linear pattern fabrication on plated-type polymers (PC). Replicated pattern depth increases in proportion to the forming temperature, load and time. Reduction of the workpiece thickness increases according to press hold time. In process of time, reduction ratio of workpiece thickness decreases because of surface area increment of the workpiece and pressure decline on it.

  • PDF

Waviness measurement of workpiece with a Large Surface Area (대면적 공작물의 기하학적 Waviness 측정)

  • Kang D.B.;Son S.M.;Ah J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.115-118
    • /
    • 2005
  • A workpiece with a large surface area is likely to be uneven due to form error and waviness. These geometric disturbances can cause inaccurate micro shapes to be formed when micro features are micro-grooved into the surface and cause the resulting workpiece to fail to function as desired. Thus, real-time measurement and compensation is required to guarantee the form accuracy of micro features while machining a workpiece with a large surface area. In this study, a method is suggested for real-time measurement of geometric error for the micro grooving of a large flat surface using a laser displacement sensor. The measurements are demonstrated for the workpieces with large surface areas and the experimental results show that the waviness and form error are well detected.

  • PDF

A Study on the Verification of 5-Axis CNC Machining (5축 CNC가공의 검증에 관한 연구)

  • 김찬봉;양민양
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 1994
  • 5-axis CNC machining is being used in the manufacturing of tire mold, screw, and turbine blade because it can produce complex workpiece more efficiently and accurately than 3-axis CNC machining does. However, it is difficult to calculate the CL data in 5-axis CNC machining. This paper describes an efficient method to modify and edit the NC code and a data structure for representation of the workpiece produced by 5-axis CNC machining. Wireframe display of tool path and shading display of workpiece are used to represent verification results. Machining errors can be evaluated quantitively using the data structure based on the workpiece data model. The methods are implemented in a program with a IBM-PC and MS-Windows.

Grinding of WC-${Cr_3}{C_2}$-$Mo_2$$C-Ni Based Carbide (WC-${Cr_3}{C_2}$-$Mo_2$$C-Ni계 초경합금의 연삭)

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.952-955
    • /
    • 2002
  • $WC-3%(Cr_3C_2)-2%(Mo_2C)-12%Ni$ carbides were ground with three different types of electroplated diamond wheels with respect to grain friability. The grinding ratio in the case of the highest toughness grains, A becomes the highest at the workpiece speeds of 40 and 70mm/min exhibiting larger effect with smaller workpiece speed. The grinding ratio with the medium toughness grain is higher than that of grain A at higher workpiece speeds than 100mm/min. The surface roughness becomes smaller with increasing the grain friability The increasing rate on surface roughness with the increase of workpiece speed becomes higher with using the grain of lower friability.

  • PDF

A Study on the Effects of Process Parameters on Dynamic Behavior Changes of Turning System (선반에서 공정변수가 가공물의 동적 거동 변화에 미치는 영향에 관한 연구)

  • Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.21-28
    • /
    • 1997
  • This paper presents the influence of the process parameters on the change in dynamic behavior of a lathe turning system. With variation of feed rate, depth of cut, direction of tool motion, cutting speed and tool location along the workpiece, the dynamic characteristics of stable cutting, chatter transition and fully developed chatter regions are demonstrated. The workpiece vibration during machining is continuously measured at different tool locations along the workpiece and quantitatively analyzed. Complex linear behavior due to change of process parameter values as well as fundamental wystem nonlinearity due to change of process configuration indicated by a tool path dependence of the locations of chatter onset and disappearance are described. Finally, the structural characteristics of the turning system which can have large and nonlinear effects on system behavior are presented.

  • PDF

A Study on Performance Characteristics of Super-mirror Face Grinding Machine Using Variable Air Pressure (가변 공기압력 초경면 연마기의 성능 특성에 관한 연구)

  • Bae, Myung-Whan;Jung, Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.9-16
    • /
    • 2013
  • The comparisons of performance characteristics between the super-mirror face grinding machine using variable air pressure developed in this laboratory to grind precisely the sliding face of a surface hardened workpiece with thermal spray and the conventional one are investigated by measuring the surface roughness and hardness for a SCM440. To process variously workpiece according to shape, size and materials, the rotating and contacting forces of the developed grinding machine can be changed by air pressure. The surface roughness of processed workpiece can be also attained to state of mirror face by grinding precisely the sliding face with changing the rotating speed of diamond wheel. It is possible to be attached to the various machine tools because the super-mirror face grinding machine using variable air pressure is a small size. The grinding efficiency is elevated because it can be worked by two or more grinding machines attached to concurrently a machine tool for the large workpiece. In this study, results show that the cusp height of the super-mirror face grinding machine for the particle size of 100 and $1500No./mm^2$ is lower than that of the conventional one because the vibration is reduced by rotating very fast the diamond wheel with a pressed air and it can be processed by rotating the diamond wheel with a constantly varied air pressure perpendicular to workpiece surface, and that the workpiece in the super-mirror face grinding machine for the particle size of $3000No./mm^2$ can be processed to state of mirror face that is rarely seen by the cusp height. It is also found that the surface hardness of both the conventional and the super-mirror face grinding machines are increased as the particle size of diamond wheel is reduced, and the surface hardness of the super-mirror face grinding machine is HRC 1.1 ~ 1.8 higher than that of the conventional one.

A study on the test workpiece for accuracy analysis of multi-axis turning and milling center (선반 및 밀링 겸용 다축 복합가공기의 정밀도 검증을 위한 표준공작물에 대한 연구)

  • Shin, Jae-Hun;Kim, Hong-Seok;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.277-284
    • /
    • 2018
  • Recently, the demand for precision machining through multi-axis machining has been greatly increased. However, it is difficult to evaluate the geometrical accuracy of the machine tool because of its complicated geometric relationship. In this study, we organized the KS/ISO specifications which are distributed in various regulations, and re-organized the geometrical precision evaluation items of multi-axis machine tools. In addition, a test workpiece was proposed to evaluate and analyze the accuracy of a multi-axis machine tool, and a test workpiece was machined according to predetermined methods and procedures, and then the machined surfaces were measured using CMM. As a result, it was verified that the machining results of the standard workpiece and the precision of the machine tool were very similar qualitatively and quantitatively. From these results, it can be confirmed that the precision analysis of the multi-axis machine tool is possible only by machining the test workpiece.

The Comparative Analysis of Numerical and Experimental Results for Prediction of Workpiece Temperature in the Commercial Reheating Furnace (상용급 재가열로에서 소재 온도 예측을 위한 해석과 실험 결과의 비교 분석)

  • Lee, Chunsik;Lee, Jae Yong;Ryu, BoHyun;Rhim, DongRyul
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.74-79
    • /
    • 2019
  • Specially designed test material was used for workpiece temperature measurement in the commercial reheating furnace and a linearized thermal model was applied for real time temperature prediction. The applied furnace is a walking beam type and specification of the workpiece is a STS302 which is 160mm in width, 160mm in height and 8100mm in length. Also six thermocouples were installed in width, height and length direction for temperature measurement. Ambient temperature in the furnace was raised to 1265 Celsius degrees and it took about 2.5 hours from loading to discharging of the workpiece. As a result of the experiment, temperature of the workpiece at discharge was 1257 Celsius degrees on the average in the range of 1256 to 1259 Celsius degrees, and predicted average temperature through the thermal model was 1251 Celsius degrees. Therefore, the deviation of the analysis and test results is about 6 degrees, which is within the range of 10 degrees required by the industry.