• 제목/요약/키워드: work flow

검색결과 2,760건 처리시간 0.027초

다단 임팩터(MOUDI)의 조대 입자 채취 특성 (Collection Characteristics of a MOUDI Cascade Impactor for Coarse Particles)

  • 배귀남;지준호;문길주
    • 한국대기환경학회지
    • /
    • 제15권6호
    • /
    • pp.799-804
    • /
    • 1999
  • Particle collection characteristics of the MOUDI cascade impactor has been studied for coarse particles in the range of 2 to 20$mu extrm{m}$ in aerodynamic diameter. A vibrating orifice aerosol generator was empolyed to generate monodisperse test aerosols. The oleic acid and sodium chloride(NaCl) particles were used as test aerosols. Aluminum foil and Teflon filter were selected as impaction media. The sampling flow rate was changed from 25 to 35L/min. Particle collection efficiency for single stage was examined for liquid particles. The stage response was obtained experimentally for the cascade impactor composed of three stages and a backup filter. The results showed that most of particle collection efficiencies measured in this work are similar to the efficiency curves obtained by Marple et al.(1991). For particles less than cut-off size of the stage, the collection efficiencies of solid particles are similar to those of loquid particles. However, the collection efficiency of solid particles decreases with mereasing particle diameter for the particles greater than the actual cut-off size of the impactor. The particle collection efficiency increases with increasing sampling flow rate at the same particel size. However, the collection efficiency curves seem not to be greatly shifted with the flow rate. The stage responses obtained by direct measurements in this work are in good agreement with those derived from the collection efficiency curves for single stage.

  • PDF

상관성 분석을 통한 침입수 발생 영향인자 분석 (Factor analysis on infiltration using correlations)

  • 류재나;오재일;최익훈
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.185-192
    • /
    • 2011
  • Pearson's correlation was used to determine relations between infiltration and affecting factors using flow monitoring data measured in 24 areas with different characteristics. Factors showed relatively high correlations than others were indexed to determine infiltration rates of the study area. Among 8 factors(service area, sewer length, sewer diameter, multiplier of sewer length and diameter, number of manholes, population, number of properties, number of households) tested, the multiplier of sewer length and diameter, the number of population and the number of household in each service area indicated higher correlation coefficient(>0.8) than others. The goodness of fitness of linear regressions between infiltration and the factors followed the order: sewer length and diameter(0.68)> population(0.65)> number of household(0.60). Infiltration rates calculated by the multiplier of sewer length and diameter, the number of population and the number of household in each service area were 0.046~1.0396 $m^{3}/d{\cdot}mm-km$, 0.0917~1.7355 $m^{3}/capita{\cdot}d$, 0.196~4.529 $m^{3}/household {\cdot}d$ respectively. After sewerage rehabilitation work of the area, the infiltration rates calculated by above factors with high correlations are expected to be used for comparing effectiveness of the work once they are estimated under the same flow measuring conditions.

회전하는 원뿔의 각도에 따른 축 대칭 원통형 용기에서의 와동붕괴에 관한 연구 (Vortex breakdown in an axisymmetric circular cylinder with rotating cones)

  • 김재원;엄정섭
    • 설비공학논문집
    • /
    • 제9권1호
    • /
    • pp.55-63
    • /
    • 1997
  • A numerical investigation has been made for flows in an axisymmetric circular cylinder with an impulsively rotating cone located at the bottom of the container. The axisymmetric container is completely filled with a viscous fluid. Major parameter for the present research is only the vertex angle of the cone, otherwise Reynolds number and aspect ratio of the vessel are fixed. Main interest concerns on the vortex breakdown of meridional circulation by impulsive rotation of the cone with respect to the longitudinal axis of the cylinder. Numerical method has been used to integrate momentum and continuity equations on a generalized body-fitted grid system. The pattern of vortex breakdown is quite different from that in a right circular cylinder with flat endwall disks. The flow visualization photograph of the preceeding work by Escudier is compared with the present numerical results and the two results are in good agreements. Also flow data are plotted to gain a deep understanding for the present phenomena of the vortex breakdown. The conclusions of this work are clearly explained by the classical theory of the vortex flows in a finite geometry.

  • PDF

Unsteady Simulations of the Flow in a Swirl Generator, Using OpenFOAM

  • Petit, Olivier;Bosioc, Alin I.;Nilsson, Hakan;Muntean, Sebastian;Susan-Resiga, Romeo F.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.199-208
    • /
    • 2011
  • This work presents numerical results, using OpenFOAM, of the flow in the swirl flow generator test rig developed at Politehnica University of Timisoara, Romania. The work shows results computed by solving the unsteady Reynolds Averaged Navier Stokes equations. The unsteady method couples the rotating and stationary parts using a sliding grid interface based on a GGI formulation. Turbulence is modeled using the standard k-${\varepsilon}$ model, and block structured wall function ICEM-Hexa meshes are used. The numerical results are validated against experimental LDV results, and against design velocity profiles. The investigation shows that OpenFOAM gives results that are comparable to the experimental and design profiles. The unsteady pressure fluctuations at four different positions in the draft tube is recorded. A Fourier analysis of the numerical results is compared whit that of the experimental values. The amplitude and frequency predicted by the numerical simulation are comparable to those given by the experimental results, though slightly over estimated.

2차 유체 조건 변화에 대한 CO2용 수냉식 열펌프의 성능 특성에 관한 연구 (Performance Characteristics of Water-Chilling Heat Pump Using CO2 on the Variation of Secondary Fluid Conditions)

  • 손창효;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.543-551
    • /
    • 2007
  • The performance characteristics of water-chilling heat pump using $CO_2$ with respect to variation of inlet temperature and mass flow rate of secondary fluid was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter-flow-type heat exchangers with concentric dual tubes, which ate made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2.4 m length. The experimental results were summarized as the followings : As inlet temperature of secondary fluid in the gas cooler increases from $10^{\circ}C$ to $40^{\circ}C$, the compressor work, heating capacity and heating COP were varied to 37.8%, -13%, -35.9%, respectively. The heating capacity, compressor work, heating COP were turned into 23.3%, 6.42%, 13.1%, respectively when ass flow rate of secondary fluid in the evaporator increases from 70 g/s to 150 g/s. The above tendency is similar with performance variation with respect to temperature variation of secondary fluid in the conventional vapor compression cycle.

Performance of Solid Oxide Fuel Cells with Direct Internal Reforming of Methane

  • Kim, Young Jin;Lim, Hyung-Tae
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.325-330
    • /
    • 2015
  • Performance of solid oxide fuel cells (SOFCs), in comparison with that under hydrogen fuel, were investigated under direct internal reforming conditions. Anode supported cells were fabricated with an Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode for the present work. Measurements of I-V curves and impedance were conducted with S/C (steam to carbon) ratio of ~ 2 at $800^{\circ}C$. The outlet gas was analyzed using gas chromatography under open circuit condition; the methane conversion rate was calculated and found to be ~ 90% in the case of low flow rate of methane and steam. Power density values were comparable for both cases (hydrogen fuel and internal steam reforming of methane), and in the latter case the cell performance was improved, with a decrease in the flow rate of methane with steam, because of the higher conversion rate. The present work indicates that the short-term performance of SOFCs with conventional Ni+YSZ anodes, in comparison with that under hydrogen fuel, is acceptable under internal reforming condition with the optimized fuel flow rate and S/C ratio.

Experimental Study on Cerebral Hemodynamics during Observation of Plants

  • Suda, Ayumu;Lee, Ju-Young;Fujii, Eijiro
    • 한국조경학회:학술대회논문집
    • /
    • 한국조경학회 2007년도 Journal of Landscape Architecture in Asia Vol.3
    • /
    • pp.214-219
    • /
    • 2007
  • Psychological and physiological effects of plants were studied by investigating human responses while observing plants. Eighteen healthy adult male(aged between $19{\sim}25$ years) participated in this study. Semantic differential method(SD method) and multi-channel near-infrared spectroscopy(NIRS) were used to survey verbal and non-verbal response, respectively. Cerebral hemodynamics as a new evaluation index of brain activity was recorded for right brain hemisphere where visual information is mainly delivered. Thirty seconds of cerebral blood flow in forty seven channels were calculated when watching five types of picture images with different rates of hedge against gray block wall; 0:10, 3:7, 5:5, 7:3, 10:0. In the SD results, similar evaluations were found in all subjects. However, the change of cerebral hemodynamics as a non-verbal response varied among subjects. Largely two patterns of hemodynamics change were found with increasing plants rate in picture images; group A showed significant decreases of blood flow volume in many cortical regions, Group B had significant increase of blood flow volume in the occipital region for the scenes seen comparatively more plant. Our findings on the cerebral hemodynamics may indicate that there are two patterns of brain activity during observation of plants; group A in which brain areas associated with visual information and thinking work simultaneously to the visual stimuli; group B in which brain areas associated only with visual information work.

  • PDF

Application of artificial neural network for the critical flow prediction of discharge nozzle

  • Xu, Hong;Tang, Tao;Zhang, Baorui;Liu, Yuechan
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.834-841
    • /
    • 2022
  • System thermal-hydraulic (STH) code is adopted for nuclear safety analysis. The critical flow model (CFM) is significant for the accuracy of STH simulation. To overcome the defects of current CFMs (low precision or long calculation time), a CFM based on a genetic neural network (GNN) has been developed in this work. To build a powerful model, besides the critical mass flux, the critical pressure and critical quality were also considered in this model, which was seldom considered before. Comparing with the traditional homogeneous equilibrium model (HEM) and the Moody model, the GNN model can predict the critical mass flux with a higher accuracy (approximately 80% of results are within the ±20% error limit); comparing with the Leung model and the Shannak model for critical pressure prediction, the GNN model achieved the best results (more than 80% prediction results within the ±20% error limit). For the critical quality, similar precision is achieved. The GNN-based CFM in this work is meaningful for the STH code CFM development.

실시간 수위정보를 활용한 수문조사 스케줄링 구현 (Implementation of Hydrological Survey Scheduling using Real-Time Water Level Information)

  • 최재명
    • Journal of Platform Technology
    • /
    • 제11권2호
    • /
    • pp.66-75
    • /
    • 2023
  • 첨단장비 도입 및 기술의 발전으로 수문조사 측정 기술은 향상되었으나 여전히 수문조사 시 많은 인력과 시간이 필요하며, 업무 규모와 범위에 비해 투입되는 인력은 매우 제한적이다. 또한, 자동유량 측정시설이 운영되고 있지만 현장 조건의 제한되기 때문에 전국으로 확대하기가 어렵다. 따라서 수문조사를 위해 측정 기술 자체보다는 운영 인프라 및 환경 개선이 필요하다. 또한 유량조사 측면에서 수위-유량 관계식의 정확도 재고와 업무 효율성 증진을 위해 실시간 수위 정보를 이용한 조사 스케줄링이 필요하다. 따라서 본 논문에서는 국내 수문조사 관련 연구 파악 및 수문조사의 경제성과 효율성 증대를 위하여 Open API 기반의 실시간 수위 정보를 활용한 수문조사 스케줄링 시스템을 구현하였다.

  • PDF

작업구역의 합리적 분할에 의한 건축 마감공사의 공정운영 개선 (Improvement of Construction Process management dividing the work area reasonably in Building Construction)

  • 윤유상;정영권;서상욱;신동우;김창덕;김경래
    • 한국건설관리학회논문집
    • /
    • 제4권2호
    • /
    • pp.59-65
    • /
    • 2003
  • 현대의 건축공사는 고층화 추세에 따라 반복공정의 수가 증가하고, 마감공사에서의 관련 공종 수가 증가하여 작업연속성에 대한 계획 및 공사관리가 중요하게 인식되고 있다. 이러한 마감공사의 합리적 운용을 위해 작업구역의 분할과 각 작업을 일정한 리듬으로 반복되도록 함에 따라 공정의 개선을 이루고자하는 기법 중의 하나가 택트공정관리 기법이다. 택트공정관리에서는 작업구역의 출역인원 파악으로 현재의 공정 진행률을 측정하는데, 작업의 특성을 고려하지 않은 작업구역 분할 체계는 출역인원의 정확한 파악을 저해하는 요소로 작용한다. 따라서 본 연구에서는 사례조사 및 현장 인터뷰를 통하여 현재 작업구역 분할 체계와 맞지 않는 공종을 파악하고, 작업의 특성을 고려한 작업구역 분할 체계를 제시하였다.