• 제목/요약/키워드: work flow

검색결과 2,757건 처리시간 0.03초

항공용 가스터빈 연소기 기본 설계 프로그램 개발 : Part 2 - 공기 유량 배분 (Preliminary Design Program Development for Aircraft Gas Turbine Combustors : Part 2 - Air Flow Distribution)

  • 김대식;유경원;황기영;민성기
    • 한국연소학회지
    • /
    • 제18권3호
    • /
    • pp.61-67
    • /
    • 2013
  • This study introduces the design methods for air flow distribution at the level of preliminary design, and reviews the typical combustion process and main functions of sub-components of aircraft gas turbine combustors. There are lots of design approaches and empirical equations introduced for air flow distributions at the combustors. It is shown that a decision on which design approaches work for the combustor development is totally dependent upon the objective of engine design, target performance, and so on. The current results suggested for preliminary air flow distributions need to be validated by combustor geometry checkups and performance evaluations for future works.

유체 렌즈의 초점과 유동 인자의 상관관계에 대한 수치해석 (Numerical study on the relation between flow parameters and the focal point of fluidic lens)

  • ;김대겸
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.90-95
    • /
    • 2019
  • In the present work, the effect of flow parameters such as volume flow rate on focal point of fluidic micro lens is investigated numerically. ANSYS Fluent is used for simulations, and the flow parameters and number of simulations are determined using the space filling method of design of experiment (DOE). Having determined the location of interfaces between fluids inside the micro lens which acts as the lens curvature, a ray tracking simulation on each case is performed using COMSOL Multiphysics to determine the focal point for each lens. These data are then used to provide a relation between flow parameters and the focal point of the lens.

복합재료 수지 전달 공정의 몰드플로우를 이용한 유동과 경화 시뮬레이션 (Flow and Cure Simulation of resin transfer molding process for composites using MoldFlow)

  • 정재성;홍지선;김선경
    • Design & Manufacturing
    • /
    • 제16권3호
    • /
    • pp.44-49
    • /
    • 2022
  • In this study, the simulation of the resin transfer molding process method using MoldFlow has been investigated. This work explains the thermoset material model, fabric permeability model, the flow model and the cure model. It has been shown that the simulation result can predict filling and cure performances.

On the numerical simulation of perforated bluff-bodies: A CFD study on a hollow porous 5:1 rectangular cylinder

  • Xu, Mao;Patruno, Luca;Lo, Yuan-Lung;de Miranda, Stefano;Ubertini, Francesco
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.1-14
    • /
    • 2022
  • In this work the flow through a hollow porous 5:1 rectangular cylinder made of perforated plates is numerically investigated by means of 2D URANS based simulations. Two approaches are adopted to account for the porous surfaces: in the first one the pores are explicitly modeled, so providing a detailed representation of the flow. In the second one, the porous surfaces are modeled by means of pressure jumps, which allow to take into account the presence of pores without reproducing the flow details. Results obtained by using the two aforementioned techniques are compared aiming at evaluating differences and similarities, as well as identifying the main flow features which might cause discrepancies. Results show that, even in the case of pores remarkably smaller than the immersed body, their arrangement can lead to local mechanisms able to affect the global flow arrangement, so limiting the accuracy of pressure jumps based simulations. Despite that, time-averaged fields often show a reasonable agreement between the two approaches.

DEVELOPMENT OF INFORMATION FLOW RETRIEVAL SYSTEM FOR LARGE-SCALE AND COMPLEX CONSTRUCTION PROJECTS

  • Jinho Shin;Hyun-soo Lee;Moonseo Park;Kwonsik Song
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.648-651
    • /
    • 2013
  • The information generated in large-scale and complex construction projects are transferred continuously and transformed into project products on the long span life cycle. Therefore, information flow management is related with the success of project directly. However, certain characteristics of large-scale and complex construction projects make the solving the problem more difficultly. Although several information retrieval systems support the information management system, it is not suitable to grasp information flows. Hence, we developed an information retrieval system specialized with the information flow based on a preceding research. The system consists of a relation-based database and the process information transferring relation inference application module. The system enables project managers to manage the entire project process more efficiently and each project member to work their own task being served the information flow retrieval results.

  • PDF

Reynolds number effect on the flow past two tandem cylinders

  • Derakhshandeh, Javad Farrokhi;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.475-483
    • /
    • 2020
  • This work investigates Reynolds number Re (= 50 - 200) effects on the flows around a single cylinder and the two tandem (center-to-center spacing L= L/D = 4) cylinders, each of a diameter D. Vorticity structures, Strouhal numbers, and time-mean and fluctuating forces are presented and discussed. For the single cylinder, with increasing Re in the range examined, the vorticity magnitude, Strouhal number and fluctuating lift all monotonically rise but time-mean drag, vortex formation length, and lateral distance between the two rows of vortices all shrink. For the two tandem cylinders, the increase in Re leads to the formation of three distinct flows, namely reattachment flow (50 ≤ Re ≤ 75), transition flow (75 < Re < 100), and coshedding flow (100 ≤ Re ≤ 200). The reattachment flow at Re = 50 is steady. When Re is increased from 75 to 200, the Strouhal number of the two cylinders, jumping from 0.113 to 0.15 in the transition flow regime, swells to 0.188. The two-cylinder flow is more sensitive to Re than the single cylinder flow. Fluctuating lift is greater for the downstream cylinder than the upstream cylinder while time-mean drag is higher for the upstream cylinder than for the other. The time-mean drags of the upstream cylinder and single cylinder behaves similar to each other, both declining with increasing Re.

비대칭 터빈 로터 실에 기인한 축 가진력 (Rotordynamic Forces Due to Rotor Sealing Gap in Turbines)

  • 김우준;송범호;송성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF

유연 PCB 자동삽입라인의 부하 평준화를 위한 작업흐름선택모델 (Job Route Selection Model for Line Balancing of Flexible PCB Auto-Insertion Line)

  • 함호상;김영휘;정연구
    • 대한산업공학회지
    • /
    • 제20권4호
    • /
    • pp.5-21
    • /
    • 1994
  • We have described the optimal process route selection model for the PCB(printed circuit board) auto-insertion line. This PCB assembly line is known as a FFL(flexible flow line) which produces a range of products keeping the flow shop properties. Under FFL environments, we have emphasized the balancing of work-loads in order to maximize total productivity of PCB auto-insertion line. So we have developed a heuristic algorithm based on a work-order selection rule and min-max concept for the job route selection model.

  • PDF

NUMERICAL SIMULATION OF PLASTIC FLOW BY FINITE ELEMENT LIMIT ANALYSIS

  • Hoon-Huh;Yang, Wei-H.
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1992년도 춘계학술대회 논문집 92
    • /
    • pp.159-176
    • /
    • 1992
  • Limit analysis has been rendered versatile in many problems such as structural problems and metal forming problems. In metal forming analysis, a slip-line method and an upper bound method approach to limit solutions is considered as the most challenging areas. In the present work, a general algorithm for limit solutions of plastic flow is developed with the use of finite element limit analysis. The algorithm deals with a generalized Holder inequality, a duality theorem, and a combined smoothing and successive approximation in addition to a general procedure for finite element analysis. The algorithm is robust such that from any initial trial solution, the first iteration falls into a convex set which contains the exact solution(s) of the problem. The idea of the algorithm for limit solution is extended from rigid/perfectly-plastic materials to work-hardening materials by the nature of the limit formulation, which is also robust with numerically stable convergence and highly efficient computing time.

  • PDF

유연생산시스템의 효율적 운용을 위한 지능적 기법의 적용에 관한 연구 (Application of Intelligent Technique for the Efficient Operation of the Flexible Manufacturing System)

    • 한국경영과학회지
    • /
    • 제24권2호
    • /
    • pp.1-15
    • /
    • 1999
  • This research involves the development and evaluation of a work flow control model for a type of flexible manufacturing system(FMS) called a flexible flow line(FFL). The control model can be considered as a kind of hybrid intelligent model in that it utilizes both computer simulation and neural network technique. Training data sets were obtained using computer simulation of typical FFL states. And these data sets were used to train the neural network model. The model can easily incorporate particular aspects of a specific FFL such as limited buffer capacity and dispatching rules used. It also dynamically adapts to system uncertainty caused by such factors as machine breakdowns. Performance of the control model is shown to be superior to the random releasing method and the Minimal Part Set(MPS) heuristic in terms of machine utilization and work-in-process inventory level.

  • PDF