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Abstract

Limit analysis has been rendered versatile in many problems such as structural problems and
metal forming problems. In metal forming analysis, a slip-line method and an upper bound method
have filled the role of limit analysis. As a breakthrough of the previous work, computational
approach to limit solutions is considered as the most challenging areas.

In the present work, a general algorithm for limit solutions of plastic flow is developed with the
use of finite element limit analysis. The algorithm deals with a generalized Holder inequality, a
duality theorem, and a combined smoothing and successive approximation in addition to a general
procedure for finite element analysis. The algorithm is robust such that from any initial trial solution,
the first iteration falls into a convex set which contains the exact solution(s) of the problem. The idea
of the algorithm for limit solution is extended from rigid/perfectly-plastic materials to work-hardening
materials by the nature of the limit formulation, which is also robust with numerically stable
convergence and highly efficient computing time.

1. Introduction

Limit analysis is known as the asymptotic approach in plasticity. Although the
early theory of limit analysis was developed in an ad hoc manner, the current state of
limit analysis have been able to be established on the deeper physical and mathematical
foundation than previously attempted. A concise architecture of limit analysis is now
emerged with new physical interpretation, rigorous mathematical formulation and
efficient computational methodology. As a consequence, computational approach to
limit analysis is often regarded as finite element limit analysis. With the aid of the
finite element limit analysis, a new attempt to obtain the plastic flow field in various
metal forming process becomes possible as a substitution of a slip-line method or an
upper bound method which has been carried out by intuitions inspired from deep
theoretical backgrounds and insights on the mechanics. The systematic approach is
robust such that from any initial trial solution, the first iteration falls into a convex set
which contains the exact solution(s) of the problem. Accordingly, it always converges
to the exact solution from any arbitrary initial guess, and makes it possible to obtain the
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solutions of very complicated problems withont a prior conjecture.

Although limit analysis studies the asymptotic behavior of elastoplastic materials,
the idea of the algorithm for limit solutions can be extended from rigid/perfectly plastic
materials to work-hardening materials. The present finite element limit analysis can be
applied to the problem of plastic deformation for work-hardening materials by
replacing the initial yield stress with the current flow stress. This idea is of no
difference from that of the incremental analysis except it always guarantees numerical
stable convergence and highly efficient computing time because there is no need to
compute the elastoplastic tangential modulus.

In this paper, the framework in the finite element limit analysis is described as a
mechanics problem, interpreting a model of asymptotic behavior of materials, stating a
variational principle of duality, and developing a computational algorithm. Although
the concept applies to general limit problems, examples and discussions pertain only to
the class of plane strain problems and axisymmetric problems. Numerical examples of
the plane strain problems are compared with the slip-line solutions and those of the
axisymmetric problems deal with work-hardening materials as a real metal forming
process.

2. Limit Analysis Theory

From a function space point of view, solutions of the mechanics problems lie in the
intersection of three fundamental convex sets, the statically admissible set S, the
constitutively admissible set C, and the kinematically admissible set K. If the
intersection is empty, there exist no solution. If it contains a single element, the
solution is unique. Otherwise, there is a set of feasible solutions of which one may be
the most preferred optimal solution. The criterion of choosing the optimal solution is
facilitated by an objective function. Since SOCNK is a subset of SNC, the optimal
solution contained in the former is obviously in the latter. The primal formulation of a
limit analysis problem seeks an extreme point in SOC as its optimal solution and the
dual formulation seeks an extreme point in K with the best choice of an objective
function.

2.1. Primal Formulation
The primal formulation can be derived from the statically admissible conditions
and the constitutively admissible conditions. The statically admissible conditions
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include the equilibrium equation V-6 =0 in the domain D and the static boundary
condition 0'n =t on the part of the boundary 9Ds, where a given traction vector t is
prescribed. The constitutively admissible conditions can be the yield condition with
the implicit normality condition. A limit analysis problem seeks an extreme point in
SNC, that maximizes the applied load in its proportional form, qt, where q is a
positive, real scaling factor. The constrained maximization of the objective functional
q(0) in the form,

maximize q©)
subjectto  Vec =0 in D (1)
cen=q *t on dD

lioll < Oo

defines the primal formulation rf a general limit analysis problem. The problem (1) is
a convex programming in the function space R33(D), which seeks the maximum ¢(G),
while the magnitude of stress G is bounded by the yield condition in the form of a
convex norm. It is also called the lower bound formulation in plasticity and L =S C
is called the lower bound solution set since every point in L corresponds to a value of
q either lower than or equal to the maximum value q* sought.

2.2. Dual Formulation

A convex programming problem has a dual problem whose minimum solution is
equal to g*. To construct the dual problem of (1), it is started from the weak
equilibrium equation

j(V-O’)-u dQ =0 @)

where u is an arbitrary function in R3(D) with the physical interpretation of an
admissible velocity function. An admissible which satisfies the kinematic conditions
on the part of the boundary 0Dy complement to 0D; and derives meaningful quantities
under a generalized divergencetheorem will lead to the equivalent variational
statement,
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c:€dQ = qf tudl’ 3)
Dy

D

where € = %(Vu+VuT) is the 3 X 3 strain rate matrix and : denotes the inner
product operator between two matrices. Since certain non-differentiable functions are
admissible in (3), this relaxed variational principle greatly enlarges the kinematically
admissible set K from the set of compatible strains defined in the theory of elasticity
[7]. The boundary integral in (3) may be normalized such that

f tudll =1 (4)
aDS

since u appears homogeneously in (3), explicitly in the right hand side and implicitly as
€ in the left hand side. The normalization results in the alternative statement of (3)
such that

q = fD o:£dQ (5)

which also implies that the integral does not vanish and the integrand G:€ is always
non-zero and positive. Accordingly, the term G:€ can be restated by a generalized
Holder inequality (8] [9] as

c:€ = | ol <llolylel .y (6)
where the (-v) norm is called the dual norm of the (v) norm which could be the von

Mises norm or anyone else. When the von Mises norm is applied, the two norms in the
right hand side of (6) can be expressed as

I
al

ol = V %[(01—62)2+(02-03)2+(03-01)2]

lellyy = \/ %—[(81—ez)2+(82-83)2+(83-€1)2] =

)

o]
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The above two norm expressions are distinguished from each other by the subscripts
(v) and (-v), since the nature of stress is different from that of strain. For explanation,
the norm expressions in the case of the plane strain state become

v 6%-61-02+0%

\/ -;i[e%+el-ez+e%] (®)

It

“0||(V)

||8“(.v)

which are also valid for the plane stress state. The inequality (6) is sharp, meaning that
equality holds when € is chosen to be proportional to the gradient of the yield function.
This sharpness condition,

e = k V liollg, ©)

is the well known normality condition[10] in plasticity, where k is a proportional
factor. Consequently, a sharp upper bound to the functional (%) can be established

q©@ = f c:edQ < | lioliy)lel, dQ < o, f lellydQ = G (1)
D

D
D

where the upper bound functional q(u) depends only on the kinematically admissible
function ue€ K. The correct choice of K still needs to be studied in the thorough
research of functional analysis and calculus of variation. Based on the inequalities in
(10) and the existence of the absolute minimum of q(u) [11], we may state the dual

formulation,
minimize q(u)
subject to  q(u) = Gof el vy dQ , (1)
D
f tudll =1
a,
Tr{e]=1

kinematic boundary conditions on 0Dy
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where Tr[e]=1 is the incompressibility condition. While K is constructed with all
kinematically admissible velocity fields, the exact solution is in the smallest function
space whose elements satisfy the constraints in (11) and produce the absolute minimum
of the objective functional. When the absolute minimum of q(u) is attained, it is
realized that the duality relation

max q(6) = q* = min G(u) (12)

In real problems, general solutions of (11) could be obtained with the numerical
method. In the next section, the upper bound functional is first discretized into finite
clements, then a combined smoothing and successive approximation algorithm [9] [12] is
used to solve the finite dimensional minimization problem.

3. Finite Dimensional Approximation and a Minimization Technique

The dual formulation is discretized with the aid of a finite element method and
reduced into a convex programming problem in a finite dimensional space R™ where n
is the total number of the discrete variables. The integral representing the upper bound
functional (u) in (11) is then approximated by a sum

E
dw = Y, VUTAU (13)
e=1

where U is the discrete vector representation of the velocity field u, T transposes a
vector, A,  is the element stiffness matrix, and the integer E is the total number of
elements. The scalar product UTK, U in each term of the sum is interpreted as a
product formed in R™ where U € R" is the global velocity vector and K. is embedded
ina nXn null matrix.

Similarly, the normalization equation f tudl’ = 1ip (11) is approximated by

D4
CTU = 1 where C e R"is a constant vector. The finite dimensional approximation
of (11) takes the form
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minimize qU)

E
subject to  G(U) = 9, VUTALU (14)
e=1

where the parameter O0 as well as the static and kinematic boundary conditions and the
incompressibility condition is absorbed into the matrices Ae and the vector C. It can be
easily shown that each A, is positive definite or positive semi-definite and 4/ UTA U is
a convex function in R™. Since the sum of convex functions is convex, (U) is convex
and has a unique minimum value.

One last obstacle is still in the path of numerical solution of (14). Some matrices
A, are only positive semi-definite such that the product UTAJU may vanish for some
non-trivial vectors U, which may causes serious problems in the minimization
procedure. To overcome this difficulties, the objective function is slightly perturbed
with a small real number € as a smoothing parameterf12] such that

E
4(U,e) = Y, VUTAU+e? (15)
e=1

which is differentiable everywhere for € # O and remains convex. The perturbed
function recovers its original value as € — 0,

The constrained minimization problem (14) is converted, using an Lagrange
multiplier A, to an unconstrained one with the perturbed objective function in (15) such
that

minimize ®U) = q(U,e) - MCTU-1) (16)
oD

oU;
the problem of solving a system of equations such that

The minimum solution satisfies the conditions =0 ,i=1,2, ... ,n. It leads to

AU; = AC a7

in matrix notation, where the global stiffness matrix

E A,

;::1 VUTAU+e2 (18)
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is regarded as a constant matrix in each iteration and is updated from iteration to
iteration with the vector U obtained in the previous iteration. The above problem is
treated in each iteration as a linear system to be solved repeatedly with an inner and an
ouler iterative sequences.

A solution of the problem may be symbolically expressed as

Ue = AA'IC (19)
where A can be evaluated by the condition CTU = 1 to obtain

1

T CTAIC (20)

The outer iteration is associated with a decreasing sequence of €. At each fixed
value of €, an inner iteration begins with the previously obtained vector U as its initial
vector. The solution of (17) in each inner iteration is used in a feedback loop to update
A and A. The converged solution of q(U,€)and Ug under a suitable stopping
criterion terminates an inner iteration loop. Then,  is reduced for the outer iteration
to start another inner iteration. During the inner and outer iterations, an initial vector
U© js assumed only in the first inner iteration. From any initial vector U©@ | the
subsequent iterates are locked in a certain convex hall defined by the data of the
discrete problem (14). Thus, in reality, only a few values of € is needed to extrapolate
to the limit, € — 0. This robust initial convergence and the rate of convergence for the
subsequent iterations are discussed in [12].

4. Numerical Examples

The developed algorithm was demonstrated for its validity and versatility with
various plane stress problems in [9]. In this section, the algorithm is to be
demonstrated with several plastic flow problems in the plane strain case and the
axisymmetric case. The finite dimensional approximation has been carried out by a
finite element method with the three node linear triangular element or the four node
bilinear quadrilateral element. Nevertheless the choice of the type of finite elements
may depend on the nature of a problem, the linear element was rendered satisfactory in

most cases.
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4.1. Plane Strain Indentation by a Flat Punch

The first application of the present methodology must be a test of its ability to
reproduce a known result. The plane strain indentation problem is selected as the
bench mark for comparison since it is one of the typical problems solved by the
slip-line method [2] [4]. Any solution of an indentation problem is immediately
applicable, with only a change in sign, to the tension of a notched bar by superposing a
uniform velocity to bring one end of the bar to have a uniform velocity. The estimated
yield-point load for a plane semi-infinite medium indented by a smooth flat dic is P =
2ka(2+7) where 2a is the width of the die. Since the load was obtained from a lower
bound formulation in terms of stress, it is a lower bound solution. A calculated dual
solution for the yield-point load with the present algorithm is P = 3.024901, which is
obtained after 20 iterations as a total sum of inner and outer iterations. The two upper
and lower bound solutions shows the deviation of less than 2 %, which can be
satisfactory when it is counted in that the numerical calculation approximates a semi-
infinite medium as a finite medium with rough finite element meshes and allows
continuity in a velocity field. A velocity field obtained for this problem is shown in
Fig.1 with a schematic slip-line field. Fig. 1 demonstrates the obtained velocity field is
almost same as the velocity field by the slip-line method except the former is
continuous. It is a strong verification of the dual variational principle and the
algorithm.

The present algorithm is readily applied to the constrained indentation problem
which is an open problem with the slip-line method. The calculated yield-point load is
P = 3.438487 after 20 iterations. This load is slightly larger than the upper bound
solution P = 2ak(2+n+%) obtained with the velocity field drawn in Fig.2. The
deviation of two solution is less than 2 % though. Fig. 2 shows the calculated velocity
field and a schematic kinematically admissible velocity field. There seems a region
with rigid body motion under the constrained boundary. It follows that the direct
application of this velocity field to construct a slip-line field still needs a thorough
study. The velocity field itself, however, provides a good information for the
construction of a possible slip-line field.

Fig.3 shows the velocity fields in backward extrusion with the large and small
extrusion ratio respectively as a modified problem of the indentation problem. The
velocity fields explain that the plastic flow spreads over the entire region with the small
extrusion ratio while the plastic flow is restricted within a part of the region with the
large extrusion ratio. This tendency becomes obvious when the depth of a medium
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Fig. 1 Plastic flow in the indentation of a plane semi-infinite medium by a flat
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Fig. 2 Plastic flow in the constrained indentation of a plane semi-infinitc medium

by a flat punch
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Fig. 3 Plastic flow in the backward extrusion with
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(b) large extrusion ratio

— 169 —




becomes larger than the domain in calculation, which is in good agreement with the
result in [3].

4.2. Plane Strain Extrusion through a Square Die

The plane strain extrusion problem through a square die has been studied in great
detail with the slip-line method [1] [3] and the upper bound method (5] [15]. The
velocity field associated with the deformation region and the dead-metal region has
been assumed in various ways and compared with the experimental data. This
procedure needed intuitive techniques inspired from dcep'theoretical backgrounds and
insights on the mechanics and mathematics. The present algorithm, on the other hand,
offers the velocity field under the constraints of the minimum dual functional and the
smallest kinematically admissible function space without any prior conjecture. The
calculated extrusion load is plotted with the variation of the extrusion ratio in Fig.4,
and compared with the slip-line solutions. The figure shows there is a narrow gap.
between the slip-line solutions and the calculated ones. The gap will be definitely
narrower as the number of finite elements and iterations is increased.
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Fig.5 shows the velocity fields for the extrusion ratio of 0.25, 0.5, and 0.75. The
figures indicate that the dead-metal region is formed with the small extrusion ratio and
is reduced with the larger extrusion ratio. The figures also show there is only slight
difference between the calculated velocity fields and the slip-line fields considering the
former allows a continuous velocity field. With the extrusion ratio of 0.75, there
observed difference to some extext between the two velocity fields. As a matter of
fact, two slip-line solutions exists in this case [2] [3], one with the dead-metal region
and the other without the dead-metal region. The obtained velocity field is a
intermixture one and rather closer to the one without the dead-metal region. This result
is in good agreement with the experimental result in [3].

4.3. Axisymmetric Extrusion with Work-hardening materials

In the previous two sections, the validity and versatility of the present algorithm is
fully demonstrated by comparing the obtained result with the analytical and
experimental result. To apply the present algorithm to a real metal forming process,
however, the present methodology has to be fumished with the treatment of the friction
between dies and materials, and the work-hardening behavior of materials. The
objective function in the dual formulation (11) can be restated as

Jw) = o, I llell,vy A2 +mkf lugl T on
D El

Df

by including the term related to the frictional dissipation with the constant friction
factor m. Of course, this objective function (21) can be derived from the weak
equilibrium equation by applying the proper boundary condition without any
difficulties. In the above objective function, the yield stress Oo and the yield shear
stress k can be replaced by the current yield stress as

0, = 0 = F(W,) or H(&) (22)

Then, the formulation can deal with not only the problem of a medium with different
materials but the problem of a work-hardening medium as the aggregate of elements
with different flow stresses. The current yield stress can be obtained from a typical and
simple stress-strain relation
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Fig. 6 Variation of the extrusion load for die friction in the axisymmetric extrusion
through a conical die with the die angle of 30°

_____ Initial State

Steady State

Fig. 7 Equivalent strain rates in the axisymmeltric extrusion through a conical die

with the die angle of 45° for the initial state and the steady state
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a + be?

al
[

or
(23)
5 ,

c(a+e)

where a,b, and ¢ are constants for a given material.

The above idea extended from the conventional limit analysis makes it possible to
simulate any three dimensional metal forming process with work-hardening materials.
As an example, the present algorithm is applied to an axisymmetric extrusion problem
with a work-hardening material obtaining extrusion loads, and distributions of the
effective strain rate and the effective strain from the velocity field at each deformation
stage. In this paper, only a part of the results is to be presented. A thorough study of
this problem has been done in [16]. Fig.6 shows the increase of the extrusion load with
the advance of a ram as a material is work-hardened with deformation.

The calculated load concerns only the deformation load neglecting the friction
between a material and a container. This result is in good agreement with the result in
[6]. Fig.7 illustrates the variation of the deformation region as the deformation
proceeds. It is noted that thedeformation moves backward gradually during the
deformation until the steady state is reached. That is because the material near the
outlet is work-hardened more and more than the material near the inlet and the
resistance against the deformation increases

5. Conclusions

A general algorithm for plastic flow analysis has been developed and successfully
tested for plane strain problems and axisymmetric problems. The algorithm is built on
sound physical, mathematical, and computational foundations. The duality theorem
helps discern the direction and rate of convergence when an iterative approach is
applied to either the primal or the dual formulation. When the primal and dual
solutions are compared, the closing of the duality gap provides the true indicator of
convergence especially in the case when the iterative solution of a velocity field
wonders indefinitely between equally acceptable but non-unique solutions. The
combined smoothing and successive approximation method homes in robustly on a
correct optimal solution.

The numerical examples confirms the validity and versatility of the present
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algorithm with the results of very acceptable at a modest cost. Especially, a load and
velocity field for the constrained indentation problem which is an open problem with
the slip-line method is obtained without any prior conjecture. An axisymmetric
extrusion problem with a work-hardening material is also analyzed with the idea
extended from the conventional limit analysis. The result of the extrusion load and the
distribution of the effective strain rate obtained from the related velocity fields is
reasonable and in good agreement with those in literatures.
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