Browse > Article
http://dx.doi.org/10.12989/was.2022.34.1.001

On the numerical simulation of perforated bluff-bodies: A CFD study on a hollow porous 5:1 rectangular cylinder  

Xu, Mao (DICAM, University of Bologna)
Patruno, Luca (DICAM, University of Bologna)
Lo, Yuan-Lung (Department of Civil Engineering, National Taipei University of Technology)
de Miranda, Stefano (DICAM, University of Bologna)
Ubertini, Francesco (DICAM, University of Bologna)
Publication Information
Wind and Structures / v.34, no.1, 2022 , pp. 1-14 More about this Journal
Abstract
In this work the flow through a hollow porous 5:1 rectangular cylinder made of perforated plates is numerically investigated by means of 2D URANS based simulations. Two approaches are adopted to account for the porous surfaces: in the first one the pores are explicitly modeled, so providing a detailed representation of the flow. In the second one, the porous surfaces are modeled by means of pressure jumps, which allow to take into account the presence of pores without reproducing the flow details. Results obtained by using the two aforementioned techniques are compared aiming at evaluating differences and similarities, as well as identifying the main flow features which might cause discrepancies. Results show that, even in the case of pores remarkably smaller than the immersed body, their arrangement can lead to local mechanisms able to affect the global flow arrangement, so limiting the accuracy of pressure jumps based simulations. Despite that, time-averaged fields often show a reasonable agreement between the two approaches.
Keywords
porosity; porous bluff-body; porous surface; pressure jump;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wakeland, R. and Keolian, R. (2003), "Measurements of resistance of individual square-mesh screens to oscillating flow at low and intermediate Reynolds numbers", J. Fluids Eng., 125(5), 851-862. https://doi.org/10.1115/1.1601254.   DOI
2 Kurian, T. and Fransson, J. (2009), "Grid-generated turbulence revisited", Fluid Dyn. Res., 41(2), 021403. https://doi.org/10.1088/0169-5983/41/2/021403/meta.   DOI
3 Lee, S.J. and Lim, H.C. (2001), "A numerical study on flow around a triangular prism located behind a porous fence", Fluid Dyn. Res., 28(3), 209. https://doi.org/10.1016/S0169-5983(00)00030-7/meta.   DOI
4 Azizi, F. (2019), "On the pressure drop of fluids through woven screen meshes", Chemical Eng. Sci., 207, 464-478. https://doi.org/10.1016/j.ces.2019.06.046.   DOI
5 Wieghardt, K. (1953), "On the resistance of screens", Aeronaut. Quarter., 4(2), 186-192. https://doi.org/10.1017/S0001925900000871.   DOI
6 Wu, B., Li, S., Li, K. and Zhang, L. (2020), "Numerical and experimental studies on the aerodynamics of a 5: 1 rectangular cylinder at angles of attack", J. Wind Eng. Ind. Aerod., 199, 104097. https://doi.org/10.1016/j.jweia.2020.104097.   DOI
7 Xu, M., Patruno, L., Lo, Y.L. and Miranda, S. (2020), "On the use of the pressure jump approach for the simulation of separated external flows around porous structures: A forward facing step", J. Wind Eng. Ind. Aerod., 207, 104377. https://doi.org/10.1016/j.jweia.2020.104377.   DOI
8 Allori, D., Bartoli, G. and Mannini, C. (2013), "Wind tunnel tests on macro-porous structural elements: A scaling procedure", J. Wind Eng. Ind. Aerod., 123, 291-299. https://doi.org/10.1016/j.jweia.2013.09.011.   DOI
9 Annand, W. (1953), "The resistance to air flow of wire gauzes", Aeronaut. J., 57(507), 141-146. https://doi.org/10.1017/S036839310013007X.   DOI
10 Bailey, B., Montero, J., Parra, J., Robertson, A., Baeza, E. and Kamaruddin, R. (2003), "Airflow resistance of greenhouse ventilators with and without insect screens", Biosyst. Eng., 86(2), 217-229. https://doi.org/10.1016/S1537-5110(03)00115-6.   DOI
11 Belloli, M., Rosa, L. and Zasso, A. (2014), "Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower", J. Wind Eng. Ind. Aerod., 126, 75-86. https://doi.org/10.1016/j.jweia.2014.01.004.   DOI
12 Mariotti, A., Siconolfi, L. and Salvetti, M. (2017), "Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5: 1 rectangular cylinder", Europ. J. Mech. B/Fluids, 62, 149-165. https://doi.org/10.1016/j.euromechflu.2016.12.008.   DOI
13 Ooi, C., Chiu, P.H., Raghavan, V., Wan, S. and Poh, H. (2019), "Porous media representation of louvers in building simulations for natural ventilation", J. Build. Perform. Simulation, 12(4), 494-503. https://doi.org/10.1080/19401493.2018.1510544.   DOI
14 Packwood, A. (2000), "Flow through porous fences in thick boundary layers: comparisons between laboratory and numerical experiments", J. Wind Eng. Ind. Aerod., 88(1), 75-90. https://doi.org/10.1016/S0167-6105(00)00025-8.   DOI
15 Li, Y., Liu, Y. and Teng, B. (2006), "Porous effect parameter of thin permeable plates", Coastal Eng. J., 48(04), 309-336. https://doi.org/10.1142/S0578563406001441.   DOI
16 Mannini, C., Marra, A., Pigolotti, L. and Bartoli, G. (2017), "The effects of free-stream turbulence and angle of attack on the aerodynamics of a cylinder with rectangular 5: 1 cross section", J. Wind Eng. Ind. Aerod., 161, 42-58. https://doi.org/10.1016/j.jweia.2016.12.001.   DOI
17 Mariotti, A., Salvetti, M., Omrani, P. and Witteveen, J. (2016), "Stochastic analysis of the impact of freestream conditions on the aerodynamics of a rectangular 5: 1 cylinder", Comput. Fluids, 136, 170-192. https://doi.org/10.1016/j.compfluid.2016.06.008.   DOI
18 Maruyama, T. (2008), "Large eddy simulation of turbulent flow around a windbreak", J. Wind Eng. Ind. Aerod., 96, 1998-2006. https://doi.org/10.1016/j.jweia.2008.02.062.   DOI
19 Menter, F. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J., 32(8), 1598- 1605. https://doi.org/10.2514/3.12149.   DOI
20 Menter, F., Kuntz, M. and Langtry, R. (2003), "Ten years of industrial experience with the SST turbulence model", Turbulence Heat Mass Transfer, 4(1), 625-632.
21 Brundrett, E. (1993), "Prediction of pressure drop for incompressible flow through screens", J. Fluids Eng., 115(2), 239-242. https://doi.org/10.1115/1.2910130.   DOI
22 Pinker, R. and Herbert, M. (1967), "Pressure loss associated with compressible flow through square-mesh wire gauzes", J. Mech. Eng. Sci., 9(1), 11-23. https://doi.org/10.1243/JMES_JOUR_1967_009_004_02.   DOI
23 Bruno, L., Salvetti, M. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5: 1 cylinder: an overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.   DOI
24 Feichtner, A., Mackay, E., Tabor, G., Thies, P., Johanning, L. and Ning, D. (2021), "Using a porous-media approach for CFD modelling of wave interaction with thin perforated structures", J. Ocean Eng. Mar. Energy, 7(1), 1-23. https://doi.org/10.1007/s40722-020-00183-7.   DOI
25 Groth, J. and Johansson, A. (1988), "Turbulence reduction by screens", J. Fluid Mech., 197, 139-155. https://doi.org/10.1017/S0022112088003209.   DOI
26 Hoerner, S. (1958), Fluid-Dynamic Drag. Theoretical, Experimental and Statistical Information.
27 Eckert, B. and Pfluger, F. (1942), The Resistance Coefficient of Commercial Round Wire Grids. (No. NACA-TM-1003).
28 Mannini, C., Soda, A. and Schewe, G. (2010), "Unsteady RANS modelling of flow past a rectangular cylinder: Investigation of Reynolds number effects", Comput. Fluids, 39(9), 1609-1624. https://doi.org/10.1016/j.compfluid.2010.05.014.   DOI
29 Watters, C. and Masson, C. (2007), "Recent advances in modeling of wind turbine wake vortical structure using a differential actuator disk theory", J. Physics: Conference Series. https://doi.org/10.1088/1742-6596/75/1/012037/meta.   DOI
30 Sun, D., Owen, J. and Wright, N. (2009), "Application of the k - ω turbulence model for a wind-induced vibration study of 2D bluff bodies", J. Wind Eng. Ind. Aerod., 97(2), 77-87. https://doi.org/10.1016/j.jweia.2008.08.002.   DOI
31 Roach, P. (1987), "The generation of nearly isotropic turbulence by means of grids", Int. J. Heat Fluid Flow, 8(2), 82-92. https://doi.org/10.1016/0142-727X(87)90001-4.   DOI
32 Patruno, L., Ricci, M., Miranda, S. and Ubertini, F. (2016), "Numerical simulation of a 5:1 rectangular cylinder at non-null angles of attack", J. Wind Eng. Ind. Aerod., 151, 146-157. https://doi.org/10.1016/j.jweia.2016.01.008.   DOI
33 Pomaranzi, G., Daniotti, N., Schito, P., Rosa, L. and Zasso, A. (2020), "Experimental assessment of the effects of a porous double skin facade system on cladding loads", J. Wind Eng. Ind. Aerod., 196, 104019. https://doi.org/10.1016/j.jweia.2019.104019.   DOI
34 Rethore, P.E. and Sorensen, N.N. (2012), "A discrete force allocation algorithm for modelling wind turbines in computational fluid dynamics", Wind Energy, 15(7), 915-926. https://doi.org/10.1002/we.525.   DOI
35 Rethore, P.E., Laan, P., Troldborg, N., Zahle, F. and Sorensen, N.N. (2014), "Verification and validation of an actuator disc model", Wind Energy, 17(6), 919-937. https://doi.org/10.1002/we.1607.   DOI
36 Ricci, M., Patruno, L., Miranda, S. and Ubertini, F. (2017), "Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction", Comput. Fluids, 149, 181-193. https://doi.org/10.1016/j.compfluid.2017.03.010.   DOI
37 Rocchio, B., Mariotti, A. and Salvetti, M. (2020), "Flow around a 5: 1 rectangular cylinder: Effects of upstream-edge rounding", J. Wind Eng. Ind. Aerod., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.   DOI
38 Shih, T.H. (1993), A Realizable Reynolds Stress Algebraic Equation Model, Lewis Research Center, Institute for Computational Mechanics in Propulsion.
39 Taylor, G. (1944), "The aerodynamics of porous sheets", Aeronaut. Reseach Council, Reports Memoranda, 2237, 163-176.
40 Huang, L.M., Chan, H.C. and Lee, J.T. (2012), "A numerical study on flow around nonuniform porous fences", J. Appl. Mathem., 2012. https://doi.org/10.1155/2012/268371.   DOI
41 Jesus, M., Lara, J. and Losada, I. (2012), "Three-dimensional interaction of waves and porous coastal structures: Part I: Numerical model formulation", Coastal Eng., 64, 57-72. https://doi.org/10.1016/j.coastaleng.2012.01.008.   DOI
42 Kosutova, K., Hooff, T., Vanderwel, C., Blocken, B. and Hensen, J. (2019), "Cross-ventilation in a generic isolated building equipped with louvers: Wind-tunnel experiments and CFD simulations", Build. Environ., 154, 263-280. https://doi.org/10.1016/j.buildenv.2019.03.019.   DOI
43 Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017), "Aerodynamic and aeroelastic characteristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge", Eng. Struct., 137, 310-322. https://doi.org/10.1016/j.engstruct.2017.01.055.   DOI