본 논문에서는 베이즈 신경망을 결합한 종단 간 딥러닝 모형을 한국어 음성인식에 적용하였다. 논문에서는 종단 간 학습 모형으로 연결성 시계열 분류기(connectionist temporal classification), 주의 기제, 그리고 주의 기제에 연결성 시계열 분류기를 결합한 모형을 사용하였으며. 각 모형은 순환신경망(recurrent neural network) 혹은 합성곱신경망(convolutional neural network)을 기반으로 하였다. 추가적으로 디코딩 과정에서 빔 탐색과 유한 상태 오토마타를 활용하여 자모음 순서를 조정한 최적의 문자열을 도출하였다. 또한 베이즈 신경망을 각 종단 간 모형에 적용하여 일반적인 점 추정치와 몬테카를로 추정치를 구하였으며 이를 기존 종단 간 모형의 결괏값과 비교하였다. 최종적으로 본 논문에 제안된 모형 중에 가장 성능이 우수한 모형을 선택하여 현재 상용되고 있는 Application Programming Interface (API)들과 성능을 비교하였다. 우리말샘 온라인 사전 훈련 데이터에 한하여 비교한 결과, 제안된 모형의 word error rate (WER)와 label error rate (LER)는 각각 26.4%와 4.58%로서 76%의 WER와 29.88%의 LER 값을 보인 Google API보다 월등히 개선된 성능을 보였다.
국내를 비롯하여 전 세계적으로 우울증 환자 수가 매년 증가하는 추세이다. 그러나 대다수의 정신질환 환자들은 자신이 질병을 앓고 있다는 사실을 인식하지 못해서 적절한 치료가 이루어지지 않고 있다. 우울 증상이 방치되면 자살과 불안, 기타 심리적인 문제로 발전될 수 있기에 우울증의 조기 발견과 치료는 정신건강 증진에 있어 매우 중요하다. 이러한 문제점을 개선하기 위해 본 연구에서는 한국어 소셜 미디어 텍스트를 활용한 딥러닝 기반의 우울 경향 모델을 제시하였다. 네이버 지식인, 네이버 블로그, 하이닥, 트위터에서 데이터수집을 한 뒤 DSM-5 주요 우울 장애 진단 기준을 활용하여 우울 증상 개수에 따라 클래스를 구분하여 주석을 달았다. 이후 구축한 말뭉치의 클래스 별 특성을 살펴보고자 TF-IDF 분석과 동시 출현 단어 분석을 실시하였다. 또한, 다양한 텍스트 특징을 활용하여 우울 경향 분류 모델을 생성하기 위해 단어 임베딩과 사전 기반 감성 분석, LDA 토픽 모델링을 수행하였다. 이를 통해 문헌 별로 임베딩된 텍스트와 감성 점수, 토픽 번호를 산출하여 텍스트 특징으로 사용하였다. 그 결과 임베딩된 텍스트에 문서의 감성 점수와 토픽을 모두 결합하여 KorBERT 알고리즘을 기반으로 우울 경향을 분류하였을 때 가장 높은 정확률인 83.28%를 달성하는 것을 확인하였다. 본 연구는 다양한 텍스트 특징을 활용하여 보다 성능이 개선된 한국어 우울 경향 분류 모델을 구축함에 따라, 한국 온라인 커뮤니티 이용자 중 잠재적인 우울증 환자를 조기에 발견해 빠른 치료 및 예방이 가능하도록 하여 한국 사회의 정신건강 증진에 도움을 줄 수 있는 기반을 마련했다는 점에서 의의를 지닌다.
본 연구에서는 한농대에 재학 중인 3학년 학생을 대상으로 대학생활 선호도 및 졸업 후 영농의지를 파악하기 위하여 설문조사를 실시하였다. 연구 분석에는 구조화되지 않은 데이터의 분석 기법으로 오피니언 마이닝과 텍스트 마이닝 기법을 이용하였으며, 텍스트 마이닝의 결과는 워드 클라우드로 시각화하여 정보를 추출하였다. 또한 감성분석 결과를 이용하여 졸업 후 농사일을 하려는 학생들의 영농의지에 대한 통계적 분석을 하였다. 대학생활 호감도 조사는 대학 이미지, 자기 역량, 기숙사, 교육시스템, 미래 비전 등 5개 분야에 전체 10개 항목에 대하여 이루어졌다. 감성 분석을 위한 긍·부정 사전은 수집된 응답지에서 긍정과 부정의 감정을 분류하여 긍정어 사전과 부정어 사전을 각각 만들어 분석에 이용하였다. 분석 결과 10개 평가항목 가운데 대학 지원 당시의 '대학 이미지', 10년 후의 '자기 모습' 항목은 70% 이상, '자기 역량'과 '현재의 한농대' 항목은 60% 이상의 긍정적 감정을 나타냈다. 반면 '대학 기숙사' '교육과정' '장기현장실습' '한국 농업의 미래' 항목에 대해서는 긍정적 감성보다 부정적 감성이 높게 나타났다. 성별, 영농기반, 입학 동기에 따른 영농의지 차이의 교차 분석에서는 성별, 입학 동기에 따른 영농의지는 통계적으로 유의미한 결과가 나타났으나, 영농기반에서는 유의미하지 않은 결과가 나타났다. 또한 영농의지에 대한 이항 로지스틱 회귀분석에서는 통계적으로 유의미한 변수는 '입학 동기'로 파악되었으며, 본인의 의지로 입학한 학생일수록 영농의지가 형성될 확률이 높게 나타났다.
신문이나 블로그와 같은 실제 문서에서는 위키백과(Wikipedia)와 같은 기존에 없던 새로운 단어를 포함하고 있다. 그러나, 대부분의 정보 처리 기술은 시스템 개발 당시 확보한 자료를 바탕으로 사전을 구축하므로, 이러한 새로운 단어에 대해 신속하게 대처할 수 없다는 한계가 있다. 따라서 본 논문에서는 사전에 등록되어 있지 않은 한국어 미등록어를 자동으로 인식하는 모델을 제안한다. 제안하는 모델은 전문분석 기반 미등록명사 인식 단계, 웹 출현빈도 기반 미등록용언 인식 단계, 웹 출현빈도 기반 미등록명사 인식 단계로 구성된다. 제안하는 모델은 문서에서 여러 번 나타난 미등록어에 대해 전문분석을 통해 정확하게 인식할 수 있다. 그리고, 제안하는 모델은 문서에 한번 나타난 미등록어에 대해서도 웹문서를 바탕으로 광범위하게 인식할 수 있다. 또한, 제안하는 모델은 기본형이 어절에 그대로 나타나는 미등록명사뿐만 아니라 기본형이 변형하여 나타날 수 있는 미등록용언도 인식할 수 있다. 실험 결과 기존 미등록어 인식방법에 비해 제안하는 접근방법은 정확률 1.01%와 재현을 8.50%를 개선하였다.
인간은 어떤 정보를 기억하려 노력하더라도, 시간이 지남에 따라 그 정보의 대부분을 잊어버린다. 반면에 인간은 사진을 보며 대부분 잊혀진 과거의 기억을 떠올릴 뿐만 아니라, 사진 속에 존재하는 특정 물체로부터 여러 단어들을 연상한 뒤, 그 연상된 단어로부터 새로운 기억을 떠올리곤 한다. 또한 이렇게 떠올린 기억으로 그 당시의 감성을 느끼기도 한다. 따라서 본 논문은 소셜 네트워크 서비스에 업로드된 사진들과 개인의 연상 단어 사전을 활용하여 사용자의 과거 회상에 도움이 되는 증강 기억 시스템을 제안한다. 제안하는 시스템에서 사용자가 특정 사진 속에 존재하는 물체를 선택하면, 그 물체와 관련된 연상 단어가 사용자에게 제공된다. 만일 사용자가 연상 단어중 하나를 선택하면, 제안하는 시스템은 해당 단어의 물체를 포함하는 다른 사진들의 목록을 사용자에게 제공함으로써, 사용자의 기억 회상을 돕고 감성을 자극할 수 있다. 본 논문에서 제안하는 시스템은 소셜 네트워크 서비스에서 보다 다양한 콘텐츠를 제공할 수 있을 것으로 기대 된다.
사전에 등록되지 않은 미등록어는 형태소분석에서 뿐만 아니라 자연언어처리의 모든 분야에서 문제를 발생시킨다. 본 논문에서는 명사후문자열을 이용하여 미등록어를 인식하는 방법을 제안한다. 명사후문자열이란 명사를 포함하고 있는 어절에서 명사 뒤에 나오는 문자열을 의미하며, 조사, 접미사+조사, 동사화접미사+어미 등이 이에 속한다. 문서에 출현한 미등록어 포함 어절들을 모아 정렬한 다음, 동일한 앞부분을 가지는 어절이 두 개 이상일 경우에 한하여 미등록어 인식을 시도한다. 이 어절들에서 동일한 앞부분을 미등록 명사로, 그 다음 음절부터 끝 음절까지를 명사후문자열로 추정한다. 그리고 세종말뭉치에서 추출한 명사후문자열 정보를 이용하여 미등록 명사를 결정한다. 포털사이트 기사를 이용하여 실험한 결과, 2가지 형태 이상으로 출현한 미등록어에 대해 정확률 99.64%, 재현율 99.46%의 높은 인식 성능을 보였다.
본 논문은 중간언어 기반 이중언어 사전 구축 방법에서 문맥벡터의 정제 방법을 제안한다. 중간언어 기반 이중언어 사전 구축 방법은 두 언어 간의 사전이나 병렬말뭉치 등 언어 자원이 부족한 언어쌍에 매우 효과적인 방법이다. 본 논문은 두 가지 정제 방법을 통해서 성능을 개선한다. 첫 번째 방법은 양방향 번역확률을 통하여 문맥벡터를 정제하였고 두 번째 방법은 품사 정보를 이용하여 문맥벡터를 정제하였다. 본 논문은 두 개의 서로 다른 언어 쌍으로 한국어-스페인어 그리고 한국어-프랑스어 양방향에 대해서 각각 이중언어 사전을 추출하는 실험을 하였다. 높은 빈도수를 가지는 어휘에 대한 번역 정확도는 최상위에서 최소 48.5%를, 상위 20에서 최대 88.5%의 정확도를 얻었고, 낮은 빈도수를 가지는 어휘에 대한 번역 정확도는 최상위에서 최소 26.5%를, 상위 20에서 최대 66.5%의 성능을 보였다.
본 연구는 중국 최초의 대형 역사 무용극을 표방한 서안의 <장한가> 라는 작품 속에 들어있는 영상이미지의 공연효과를 분석하고자 한 것이다. 즉 <장한가> 작품 속에 들어 있는 특정 주제, 소재들을 표현함에 있어 어떠한 영상이미지를 사용하여 공연의 효과를 거두고 있는가에 대한 것이다. 영상이란 '사물의 모습이 반영된 상', 특히 영화, 텔레비전, 사전 등의 이미지를 의미하는 말로 그 범위는 매우 넓으며 image의 어원은 imitary에 근거를 둔 것으로 구체적 또는 심적으로 나타낼 수 있는 시각적 표시를 말한다. 따라서 영상이미지는 '영상'과 '이미지' 라는 동의어의 결합으로 볼 수 있는데 여기서 영상이란 단순히 시나리오의 문학성, 연극성, 미술성 등과 같이 전통적인 예술장르의 종합이 아니라 모든 예술의 본원적 기능을 통합하고 인간존재의 오묘한 이미지 활동을 연결한 결과로서의 총체라고 보는 것이다. 연구결과는 다음과 같다. <장한가>에 표현되는 영상 이미지의 효과로 첫째, 시대성과 문화를 반영한 함축적 의미의 표현 효과 둘째, 상상적 동일시 효과, 셋째, 장면전환의 효과 넷째, 몰입을 통한 극적 재미의 효과, 다섯째, 공연의 입체감을 통한 시각적 효과가 있음을 알 수 있었다.
본 논문에서는 음성 인식의 후처리를 위한 음절 복원 규칙의 생성과 복원 후보의 감소에 관한 연구를 수행하였다. 대화체 연속 음성 인식의 성능 향상을 위하여 음절 단위를 인식하는 음성인식 시스템의 후처리를 통하여 인식된 로 발음되는 복원 후보를 생성하는 음절 복원 규칙을 생성하였다. 또한 복원 집합의 후보수를 줄이기 위한 방안으로 복원 규칙에서 실생활에서 사용되지 않는 표기를 생성하는 규칙을 제거하는 방안을 제시하였다. 음절 복원 규칙이 올바른 복원 후보 집합을 생성함을 보이기 위하여 복원 후보 집합 생성기를 설계 구현하고, 표준 발음법 예제와 발음법 사전에서 무작위로 추출된 단어에 대하여 실험한 결과 발성 이전의 표기가 포함된 올바른 표기 집합이 생성됨을 입증하였다.
In recent years, the field of synthesizing voice has been developed rapidly, and the technologies such as reading aloud an email or sound guidance of a car navigation system are used in various scenes of our life. The sound quality is monotonous like reading news. It is preferable for a text such as a novel to be read by the voice that expresses emotions wealthily. Therefore, we have been trying to develop a system reading aloud novels automatically that are expressed clear emotions comparatively such as juvenile literature. At first it is necessary to identify emotions expressed in a sentence in texts in order to make a computer read texts with an emotionally expressive voice. A method on the basis of the meaning interpretation that utilized artificial intelligence technology for a method to specify emotions of texts is thought, but it is very difficult with the current technology. Therefore, we propose a method to determine only emotion every sentence in a novel by a simpler way. This method determines the emotion of a sentence according to an emotion that words such as a verb in a Japanese verb sentence, and an adjective and an adverb in a adjective sentence, have. The emotional characteristics that these words have are prepared beforehand as a emotional words dictionary by us. The emotions used here are seven types: "joy," "sorrow," "anger," "surprise," "terror," "aversion" or "neutral."
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.