• 제목/요약/키워드: wood structural design

검색결과 97건 처리시간 0.022초

Estimation of Depth Effect on the Bending Strength of Domestic Japanese Larch Structural Lumber using Weibull Weakest Link Theory

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권2호
    • /
    • pp.112-118
    • /
    • 2014
  • The depth effect on bending strength of Japanese larch structural lumber was investigated by using the published data of two different depth lumbers with the same length. Depth effect parameters were derived from Weibull's weakest link theory and compared to the results from other researches. Depth effect on bending strength was significant for No.1 and No.3 lumber, but not insignificant for No.2 lumber. Calculated value of the depth effect adjustment factors was 0.21, 0.11 and 0.22 by lumber grade, respectively. These results were similar to those results from previous researches and supported depth effect on bending strength of lumber. An apparent depth adjustment factor has been proposed to 0.2 in the literatures. Based on this study, depth adjustment factor was considered to 0.2 as a conservative optimum design value that should be incorporated in domestic building code (KBC) for structural lumber.

The Tensile Properties for Powder-driven-nail Connections for Japanese Larch Small Round Timber

  • Shim, Kug-Bo;Lee, Do-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제33권2호통권130호
    • /
    • pp.8-16
    • /
    • 2005
  • In an effort to encourage the development of value added engineered applications for small diameter round timber, research is being conducted to develop and verify design guidelines for connections with specific application to round timbers. The objective of this research is to provide potential users with a number of viable connection options applicable in the fabrication of engineered, round wood structural components and systems. Target uses include trusses, built up flange beams and space frames. This paper presents information on a mortised steel plate connection fabricated using powder driven nails in 6 cm diameter Japanese Larch. The design load for PDN connections are around 1.3 kN per nail with strip and 0.8 kN per nail without stripe. The design model for PDN connectors could be chosen by the number of nails. If the number of nails are more than the critical number between nail bearing and wood failure, the wood failure model could be the way to design the structure safely. The wood failure model needs to be studied more but the model could be the tensile and cleavage mixed failure model.

Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load

  • Shadravan, Shideh;Ramseyer, Chris C.;Floyd, Royce W.
    • Advances in Computational Design
    • /
    • 제4권3호
    • /
    • pp.251-272
    • /
    • 2019
  • This study performed lateral load testing on seventeen wood wall frames in two sections. Section one included eight tests studying structural foam sheathing of shear walls subjected to monotonic loads following the ASTM E564 test method. In this section, the wood frame was sheathed with four different types of structural foam sheathing on one side and gypsum wallboard (GWB) on the opposite side of the wall frame, with Simpson HDQ8 hold down anchors at the terminal studs. Section two included nine tests studying wall constructed with oriented strand board (OSB) only on one side of the wall frame subjected to gradually applied monotonic loads. Three of the OSB walls were tied to the baseplate with Simpson LSTA 9 tie on each stud. From the test results for Section one; the monotonic tests showed an 11 to 27 percent reduction in capacity from the published design values and for Section two; doubling baseplates, reducing anchor bolt spacing, using bearing plate washers and LSTA 9 ties effectively improved the OSB wall capacity. In comparison of sections one and two, it is expected the walls with structural foam sheathing without hold downs and GWB have a lower wall capacity as hold down and GWB improved the capacity.

Incorporating nonstructural finish effects and construction quality in a performance-based framework for wood shearwall design

  • Kim, Jun Hee;Rosowsky, David V.
    • Structural Engineering and Mechanics
    • /
    • 제21권1호
    • /
    • pp.83-100
    • /
    • 2005
  • This paper presents results from a study to extend a performance-based shearwall selection procedure to take into account the contributions of nonstructural finish materials (such as stucco and gypsum wallboard), construction quality issues, and their effects on the displacement performance of engineered wood shearwalls subject to seismic loading. Shearwall performance is evaluated in terms of peak displacements under seismic loading (characterized by a suite of ordinary ground motion records) considering different combinations of performance levels (drift limits) and seismic hazard. Shearwalls are analyzed using nonlinear dynamic time-history analysis with global assembly hysteretic parameters determined by fitting to actual shearwall test data. Peak displacement distributions, determined from sets of analyses using each of the ground motion records taken to characterize the seismic hazard, are postprocessed into performance curves, design charts, and fragility curves which can be used for risk-based design and assessment applications.

국산 침엽수구조재의 허용응력설정에 관하여 - 1종 구조재를 중심으로 - (Assignment of the Allowable Design Values for Domestic Softwood Structural Lumber - Structural I-grade -)

  • 오세창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권1호
    • /
    • pp.11-16
    • /
    • 1996
  • The purpose of this paper is to present a summary of assignment design values according to domestic softwood structural lumber grading rules. Allowable stresses for visually graded lumber were determined from basic data on small. clear specimens. The data corrected for variability such as natural defects and other factors. The procedure adopted by Japan was used for assigning allowable design values. Strength ratios in relation to each defect were taken from ASTM D 245-81. Korean pine(Pinus koraiensis S. et Z.), Korean red pine(Pinus densiflora S. et Z.), Japanese larch(Larix leptolepis Gordon) and Needle fir(Abies holophylla Max) were applied to this study. The calculated allowable stresses were same in Korean pine and Korean red pine. These values were highest in Japanese larch lowest in Needle fir. So, it is desirable for these species to be classified into different catagories Species Group. However, accurate comparison in design values on lumber grading rules among U.S., Japan and Korea was somewhat difficult. And full scale testing will be necessary for accurate determination of the correction factors to setting up design values.

  • PDF

Mass Timber: The New Sustainable Choice for Tall Buildings

  • Cover, Jennifer
    • 국제초고층학회논문집
    • /
    • 제9권1호
    • /
    • pp.87-93
    • /
    • 2020
  • Professionals who work in the realm of tall building design and construction are well aware that high-rises are the best solution for accommodating growing urban populations. Until recently, few would have thought to include tall wood buildings as part of that solution, but there is growing awareness that tall mass timber structures can help satisfy the need for density while addressing the need-equally urgent-for a more sustainable built environment. This paper examines the trend toward tall wood buildings in the United States, including their history and international influences, market drivers, structural performance, and economic viability, as well as building code changes that allow wood structures up to 18 stories. It highlights examples of mass timber projects, with an emphasis on benefits that impact return on investment.

The Effect of Supply Chain Dynamic Capability on Competitiveness and Business Efficiency of Vietnamese Wood Enterprises

  • NGUYEN, Binh Thi;MAI, Anh Thi Van
    • 유통과학연구
    • /
    • 제20권2호
    • /
    • pp.31-41
    • /
    • 2022
  • Purpose: Developing and nurturing supply chain dynamic capability is one of the leading solutions to create competitive advantages, maintain growth and sustainable development for businesses. The study was conducted to experimentally confirm the impact of supply chain dynamic capability on competitiveness and business efficiency for Vietnamese wood enterprises. Research design, data and methodology: The study surveyed 236 managers of Vietnamese wood manufacturing and distribution enterprises. The authors applied the structural equation modeling (SEM) to analyze the relationship between the dynamic capability of the supply chain and the competitiveness, business efficiency of enterprises to achieve those goals. Results: The results show that businesses owning supply chain dynamic capability will have better competitiveness and business efficiency. Especially, in the context of Vietnamese wood sector, the larger the scale of business, the more profound the impact of supply chain dynamic capability on competitiveness and business efficiency. Conclusions: Focusing on developing supply chain dynamics would be a promising solution to improve the competitiveness of Vietnam's wood enterprises in the global market.

구조용 단열재 개발을 위한 왕겨숯 보드의 강도적 성질에 대한 연구 (A Study on The Strength Properties of Board Using The Carbonized Rice Husks to Develop a Structural Insulation)

  • 김광철
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권5호
    • /
    • pp.511-518
    • /
    • 2017
  • 최근의 단열 재료에 대한 관심과 연구는 단열성능 이외의 복합적 성능을 요구하는 추세이다. 본 연구에서는 구조적인 성능을 가지는 왕겨숯 보드 개발을 위한 목재 섬유대 왕겨숯의 최적 비율을 찾고자 하였다. 왕겨숯을 활용하여 구조적 성능을 지니는 친환경 단열재를 개발하고자 기초 연구를 실시하여 다음과 같은 결론을 얻었다. 최종 왕겨숯 보드의 함수율은 3.2~4.1%로 얻어졌으며, 밀도는 0.58~0.68로 우수한 구조재료로서의 가능성을 보였다. 휨강도는 길이방향으로 9.1-32.6 MPa, 그리고 폭방향으로는 9.2-34.1 MPa로 나타났다. 통상적으로 사용되는 MDF 수준의 휨강도를 얻을 수 있어 구조적 성질을 가지는 단열재 개발의 가능성을 찾을 수 있었다.

Seismic reliability evaluation of steel-timber hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Lam, Frank;Zhou, Ruirui;Li, Minghao
    • Earthquakes and Structures
    • /
    • 제13권3호
    • /
    • pp.289-297
    • /
    • 2017
  • This paper presents seismic performance and reliability evaluation on steel-timber hybrid shear wall systems composed of steel moment resisting frames and infill light frame wood shear walls. Based on experimental observations, damage assessment was conducted to determine the appropriate damage-related performance objectives for the hybrid shear wall systems. Incremental time-history dynamic analyses were conducted to establish a database of seismic responses for the hybrid systems with various structural configurations. The associated reliability indices and failure probabilities were calculated by two reliability methods (i.e., fragility analysis and response surface method). Both methods yielded similar estimations of failure probabilities. This study indicated the greatly improved seismic performance of the steel-timber hybrid shear wall systems with stronger infill wood shear walls. From a probabilistic perspective, the presented results give some insights on quantifying the seismic performance of the hybrid system under different seismic hazard levels. The reliability-based approaches also serve as efficient tools to assess the performance-based seismic design methodology and calibration of relative code provisions for the proposed steel-timber hybrid shear wall systems.

골조형(骨造型) 가구구조설계(家具構造設計)에의 유한요소해석 응용 (Finite Elements Analysis Application to the Structural Design of the Frame Type Furniture)

  • 정우양;카알 A. 에켈만
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권3호
    • /
    • pp.8-15
    • /
    • 1995
  • This analytical study was carried out to make quality and productivity up in designing the frame-type furniture with semi-rigid joint by understanding the mechanical and structural behavior of the joint and by evaluating the validity of application of the time-saving Finite Element Method to its structural analysis. Slope deflection equation for rigid joint was modified to describe the moment-rotation behavior of semi-rigid joint and the joint stiffness factor(Z) could be calculated to lessen the experimental expense. It was proved that Finite Element Analysis with imaginary elements having equivalent MOE to the semi-rigid joint could be the alternative method for the structural analysis of the frame-type furniture, comparing the internal rotation of the 2-dimensional beam-to-column model with two-pin(wooden dowel) from the finite element method with other available theoretical and experimental rotation value.

  • PDF