• Title/Summary/Keyword: wood products

Search Result 1,044, Processing Time 0.031 seconds

Consumer Willingness to Pay Price Premium for Certified Wood Products in South Korea

  • Cha, Junhee;Chun, Jung-Nam;YOUN, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.2
    • /
    • pp.203-211
    • /
    • 2009
  • The study was conducted to examine consumers' awareness and perceptions on forest certification and their willingness to buy and pay price premium for certified wood products especially for selected four wood products. A total of 136 residents in Seoul and Gyeonggi Province were interviewed in the autumn of 2008. Although only 24.3 percent of the consumers are aware of forest certification, 82.4 percent of the respondents recognized the need and significance of forest certification. In general, 77.2 percent of the respondents were willing to buy certified wood products. Majority of the respondents, 84 out of 136 respondents (61.8%) expressed their willingness to pay (WTP) from more than 0 percent to less than 10 percent. Consumers' average WTP for certified wood products was estimated to be 5.6 percent. From the results of the study, lower priced wood products, such as copier paper (WTP=9.8%) and wood frame (WTP=11.6%), have higher price premiums than high priced products, such as wood table (WTP=6.8%) and wood flooring (WTP=7.6%). In conclusion, there could be feasible markets for certified wood products in South Korea as four out of five consumer are willing to pay more for such products. For the forest certification system to be adopted and widely accepted, the perceptions of forest stakeholders including consumers should be further increased.

A Study on the Diffusion Strategies of Wood Culture Using Analytic Hierarchy Process (AHP)

  • Jiyoon YANG;Myungsun YANG;Yeonjung HAN;Myungkil KIM;Won Joung HWANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.555-568
    • /
    • 2023
  • The diffusion strategies of wood culture were established using the analytic hierarchy process, to prepare a diffusion plan of wood culture and wood utilization in response to climate change due to global warming. 'Standardization of wood culture', 'Valuation of wood culture', and 'Habituation of wood culture' were set as three major implementation strategies and priorities were evaluated. As a result, it was analyzed in the following order: 'Development of systematic education programs for each age group for rational and efficient use of eco-friendly wood materials and development of wood education standard guidelines linked to the curriculum', 'Preparation of scientific basis data on human compatibility and eco-friendliness of wood to ensure the reliability of wood and wood products', and 'Establishment of monitoring and improvement plan through the designation as a model school'. Through this, it was determined that an educational environment, changes in public attitudes through publicity, and expanding opportunities to use wood and wood products were necessary for wood culture diffusion. The results of this study can be used as basic data to derive the diffusion strategies of wood culture and establish a roadmap and policy implementation strategy to revitalize wood culture.

Evaluation of the Basic Properties for the Korean Major Domestic Wood Species I. Korean Red Pine (Pinus densiflora) in Pyeongchang-gun, Gangwon-do

  • Yonggun PARK;Chul-ki KIM;Hanseob JEONG;Hyun Mi LEE;Kwang-Mo KIM;In-Hwan LEE;Min-Ji KIM;Gyu Bin KWON;Nayoung YOON;Namhee LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.87-100
    • /
    • 2024
  • Wood has different properties depending on the species or growth area. Therefore, in order to use wood efficiently, it is necessary to have a proper understanding of the characteristics of wood depending on the species and the appropriate use for them. In particular, in order to effectively use more than 1,000 species of woody plants in South Korea as wood, it is necessary to evaluate the characteristics of various Korean domestic woods and make a database of them. In this study, the anatomical properties (length and width of tracheid, cell wall thickness), physical properties (specific gravity and shrinkage), mechanical properties (bending strength, compressive strength, tensile strength, shear strength, hardness), and chemical composition (ash, extract, lignin, total sugar content) of Korean red pine which was grown in Pyeongchang-gun, Gangwon-do, South Korea were evaluated.

Pyrolysis Properties of Lignins Extracted from Different Biorefinery Processes

  • Lee, Hyung Won;Jeong, Hanseob;Ju, Young-Min;Youe, Won-Jae;Lee, Jaejung;Lee, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.486-497
    • /
    • 2019
  • The non-isothermal and isothermal pyrolysis properties of H lignin and P lignin extracted from different biorefinery processes (such as supercritical water hydrolysis and fast pyrolysis) were studied using thermogravimetry analysis (TGA) and pyrolyzer-gas chromatography/mass spectrometry (Py-GC/MS). The lignins were characterized by ultimate/proximate analysis, FT-IR and GPC. Based on the thermogravimetry (TG) and derivative thermogravimetry (DTG) curves, the thermal decomposition stages were obtained and the pyrolysis products were analyzed at each thermal decomposition stage of non-isothermal pyrolysis. The isothermal pyrolysis of lignins was also carried out at 400, 500, and $600^{\circ}C$ to investigate the pyrolysis product distribution at each temperature. In non-isothermal pyrolysis, P lignin recovered from a fast pyrolysis process started to decompose and produced pyrolysis products at a lower temperature than H lignin recovered from a supercritical water hydrolysis process. In isothermal pyrolysis, guaiacyl and syringyl type were the major pyrolysis products at every temperature, while the amounts of p-hydroxyphenyl type and aromatic hydrocarbons increased with the pyrolysis temperature.

Quantification of Carbon Reduction Effects of Domestic Wood Products for Valuation of Public Benefit

  • Chang, Yoon-Seong;Kim, Sejong;Kim, Kwang-Mo;Yeo, Hwanmyeong;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.202-210
    • /
    • 2018
  • This study was carried out to quantify degree of contribution of harvested wood product (HWP) on mitigation of climate change by valuation of public benefits, environmentally and economically. The potential carbon dioxide emission reduction of HWP was estimated by accounting carbon storage effect and substitution effect. Based on 2014 statistics of Korea Forest Service, domestic HWPs were sorted by two categories, such as wood products produced domestically from domestic and imported roundwood. The wood products were divided into seven items; sawnwood, plywood, particle board, fiberboard (MDF), paper (including pulp), biomass (wood pellet) and other products. The carbon stock of wood products and substitution effects during manufacturing process was evaluated by items. Based on the relevant carbon emission factor and life cycle analysis, the amount of carbon dioxide emission per unit volume on HWP was quantified. The amounts of carbon stock of HWP produced from domestic and from imported roundwood were 3.8 million $tCO_{2eq}$., and 2.6 million $tCO_{2eq}$., respectively. Also, each reduction of carbon emission by substitution effect of HWP produced from domestic and imported roundwood was 3.1 million $tCO_{2eq}$. and 2.1 million $tCO_{2eq}$., respectively. The results of this study, the amount of carbon emission reduction of HWP, can be effectively used as a basic data for promotion of wood utilization to revise and establish new wood utilization promotion policy such as 'forest carbon offset scheme', and 'carbon storage labeling system of HWP'.

Prediction of Withdrawal Resistance of Single Screw on Korean Wood Products

  • AHN, Kyung-Sun;PANG, Sung-Jun;OH, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • In this article, withdrawal resistances of axially loaded self-tapping screws on wood products made by Korean Larch were predicted with existing estimation equation, and compared with experimental test data. The research was required because no design methodology for the withdrawal resistance of self-tapping screw is present in Korean building code (KBC). First, the withdrawal resistance of wood screw was predicted to use the withdrawal design value estimation equation in National Design Specification for Wood Construction (NDS). Second, three types of wood products, solid wood, cross-laminated timber (CLT) and plywood, were utilized for withdrawal test. For decades, various engineered wood products have been developed, especially cross-laminated timber (CLT) and hybrid timber composites such as timber composites of solid wood and plywood. Therefore, CLT and plywood were also investigated in this study as well as solid wood. Finally, the predicted values were compared with experimentally tested values. As the results, the tested values of solid wood and CLT were higher than the predicted values. In contrast, it is inaccurate to predict withdrawal resistance of plywood since prediction was higher than tested values.

Physical and Mechanical Properties of Methyl Methacrylate-Impregnated Wood from Three Fast-Growing Tropical Tree Species

  • Hadi, Yusuf Sudo;Massijaya, Muh Yusram;Zaini, Lukmanul Hakim;Pari, Rohmah
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.324-335
    • /
    • 2019
  • Timber from plantation forests has inferior physical and mechanical properties compared to timber from natural forest because it is mostly from fast-growing tree species that are cut at a young age. Filling cell voids with methyl methacrylate (MMA) can improve the wood properties. The purpose of this study was to determine the physical and mechanical properties of MMA-impregnated wood from three fast-growing wood species, namely jabon (Anthocephalus cadamba (Roxb.) Miq.), mangium (Acacia mangium Willd) and pine (Pinus merkusii Jungh. & de Vriese). Wood samples were either immersed in MMA monomer or impregnated with it and then heated to induce the polymerization process. Jabon, which was the lowest density wood, had the highest polymer loading, followed by pine and mangium. The physical and mechanical properties of samples were affected by wood species and the presence of MMA, with higher-density wood having better properties than wood with a lower density. Physical and mechanical properties of MMA wood were enhanced compared to untreated wood. Furthermore, the impregnation process was better than immersion process resulting the physical and mechanical properties. Based on MOR values, the MMA woods were one strength class higher compared to untreated wood with regard to Strength Classification of Indonesian Wood.

Manufacturing of Wood Charcoal Cup by Using Carbonization Method and Its Water Repellency (목재를 이용한 무할렬 숯잔 제조 및 발수특성)

  • Park, Sang Bum;Lee, Min
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.3
    • /
    • pp.207-212
    • /
    • 2014
  • With increased interests in environmental issues, people are looking for new materials that serve special and bio-activated functions. One of interesting materials is charcoal which has excellent adsorption ability for harmful volatile organic compounds, fireproof performance, far-infrared ray emission, and electromagnetic shielding. Since non-crack carbonized board was developed from wood-based composite materials, carbonization method might be applied to woodcraft products such as wood cup and bamboo. In this study, manufacture of wood charcoal bowl was conducted with carbonization method developed in 2009 in order to activate wood products market. Ash tree(Fraxinus rhynchophylla) cup was carbonized at $600^{\circ}C$ with two pretreatments which were phenol resin and wood tar solution treatment. After carbonization of ash tree cup, non-crack charcoal cup were successfully manufactured. Phenol resin treatment affected on charcoal cup manufacturing both positively and negatively. For a positive way, it prevented shrinkage. For a negative way, it decreased water repellency. On the contrary, wood tar treatment accelerated shrinkage a bit and increased water repellency. Based on the results, wood tar can be used as pre-treatment solution for reducing post-treatment costs. We confirmed woodcraft products can be carbonized without deformation, so carbonization may provide a high value-added products from wood.

  • PDF

Hygroscopic Property, Leaching Resistance and Metal Corrosive Efficacy of Wood Treated with Fire Retardants

  • Son, Dong Won;Kang, Mee Ran;Hwang, Won Joung;Lee, Hyun Mi;Park, Sang Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.157-162
    • /
    • 2014
  • This study was conducted to examine the functionality of the fire retardant treated wood. The hygroscopic property, leaching resistance, metal corrosive efficacy and gas toxicity of retardant treated wood were analyzed. Sodium silicate was penetrated to the wood for making fire retardant treated wood. The subsequent treatment agents such as boric acid, ammonium borate, di-ammonium phosphate were treated after sodium silicate treatment due to fixation. As results for the test, the leaching resist was improved by subsequent treatment. The fire retardant combination such as sodium silicate, boric acid and di-ammonium phosphate showed high hygroscopic property, metal corrosive efficacy. The gas toxicity was also satisfied KS standard.