• Title/Summary/Keyword: wood fibers

Search Result 226, Processing Time 0.021 seconds

Nonlinear Rheological Properties of Endothelial Cell Laden-cellulose Nanofibrils Hydrogels (내피세포가 배양된 나노셀룰로오스 하이드로겔의 비선형 유변물성 분석)

  • Song, Yeeun;Kim, Min-Gyun;Yi, Hee-Gyeong;Lee, Doojin
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.153-160
    • /
    • 2022
  • Cellulose nanofibrils (CNF) based on wood pulp fibers are gained much attention as part of biocompatible hydrogels for biomedical applications such as tissue engineering scaffolds, biomedicine, and drug carrier. However, CNF hydrogels have relatively poor mechanical properties, impeding their applications requiring high mechanical integrity. In this work, we prepare 2,2,6,6-tetramethylipiperidin-oxyl (TEMPO) oxidated cellulose nanofibrils hydrogels mediated with metal cations, which form the metal-carboxylate coordination bonds for enhanced mechanical strength and toughness. We conduct the large amplitude oscillatory shear (LAOS) test and Live/dead cell assay for obtaining nonlinear viscoelastic parameters and cell viability, respectively. In particular, the cell proliferation and viability change depending on the type of metal salt, which also affected the rheological properties of the hydrogels.

The Dyeing Properties of Woody Fiber Regenerated from Waste MDF by Reactive Dyes (반응성염료에 의한 폐MDF 재생 목질섬유의 염색특성)

  • Ju, Seon-Gyeong;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.163-177
    • /
    • 2019
  • This study aims to review the relations between the dyeing conditions (i.e., dye concentration, addition amounts of salt and alkali, and dyeing temperature) and dyeing properties and color fastness to light for identifying the optimal dyeing conditions when dyed regenerated woody fibers were obtained through the defibration of waste medium density fiberboard (MDF) using reactive Red H-E3B (Bis-monochlorotriazine (MCT)/MCT type) and reactive Red RB133% (Bis-MCT/Vinyl sulphone type). The dyeing yield (K/S) obtained using two types of reactive dyes increased as the dye concentration increased by 1-10% (on the weight of fiber (OWF)). In addition, the K/S of H-E3B was higher than that of RB133% irrespective of the dye concentration. The color difference of H-E3B after ultraviolet (UV) radiation was lower than that of RB133%, denoting good resistance to discoloration by UV. As the amount of sodium sulfate increased, the color difference and K/S also increased, and the adequate salt content was determined to be 50-70 g/L. Further, the color difference and K/S significantly increased only the addition of 2 g/L of sodium carbonate; however, almost no difference was observed when more than 2 g/L of sodium carbonate was added. The addition amount of sodium carbonate was adequate 5-10 g/L to dyeing the fiber and the pH at this addition level was 10. The dyeing yield of H-E3B increased when the dyeing temperature increased; however, it subsequently decreased after the dyeing temperature became $80^{\circ}C$. The dyeing yield of RB133% was almost the same up to $60-70^{\circ}C$ but declined subsequently. Thus, the adequate temperatures were $80^{\circ}C$ and $60^{\circ}C$ for H-E3B and RB133%, respectively. If the waste MDF woody fiber was dyed under the aforementioned optimal conditions, dyed regenerated woody fiber can be obtained having the following colors: 1.5 to 2.0R with the H-E3B dye and 9.6 to 10.0 PR with RB133%.

Morphological Characteristics of Decomposition and Browning of Oak Sawdust Medium for Ground Bed Cultivation of Lentinula edodes (표고 지면재배용 참나무 톱밥배지의 분해와 갈변의 형태적 특성)

  • Koo, Chang-Duck;Lee, Seon-Jeong;Lee, Hwa-Yong
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • This study investigated the internal and external morphological characteristics of decomposition and browning of oak sawdust medium for ground bed cultivation of Lentinula edodes. Within fifty days after L. edodes inoculation, surface hyphae on the bed browned. In 110 days, the fungal hyphae occupied and decomposed wood fibers, vessels and parenchymatous cells from the inside as white profuse hyphal mass was amorphously dissolving the saw dust particles from the outer surface. Most of the white hyphal bed surface became cleanly brown, however, some colony surface became blackened and slimy with contaminating bacteria, hyphae and spores. The brown layer was ca. 0.34 mm thick with highly dense and white hyphal mass beneath, whereas the blackened layer was ca. 1.17 mm thick with shrunken hyphae and less decomposed sawdust particles beneath. The surface hardness of the brown surface was ca. $0.73kgf/cm^2$, soft and resilient, while that of the blackened was ca. $0.91kgf/cm^2$, hard and nonresilient. By 150 days Lentinula edodes mushrooms fruited only on the brown surface and not on the blackened medium.

Physical Properties and Electrical Conductivity of PAN-based Carbon Fiber Reinforced Paper (PAN계 탄소섬유 강화 종이의 물리적 특성 및 전기전도도)

  • Jang, Joon;Lee, Chang-Ho;Park, Kwan-Ho;Ryu, Seung-Kon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.602-608
    • /
    • 2006
  • Carbon fiber (CF) reinforced papers using polyacrylonitrile (PAN) based CF and wood pulp were prepared by varying the lengths and the concentrations of CF, and the basis weight of paper to investigate adhesive state between CF and pulp, and physical properties and electrical conductivity of the paper. The reinforcement was caused by physical entanglement and adhesion at the interface of the different fibers rather than by chemical bonds. The tear strength and the thickness of the paper increased as increasing the concentration of CF, while the tensile and the burst strength of the paper decreased. The improved dispersion of CF in the paper was obtained from mixing shorter CF, but the maximum electrical conductivity of the paper was gained from mixing 10 mm chopped CF. The electrical conductivity of the paper increased sharply from 2 wt% to 8 wt% of CF showing S-curve, and increased linearly as increasing the basis weight of the paper. Therefore, in order to improve the electrical conductivity and the physical property of the paper, the increase of basis weight of the paper is also important as the increase of CF content in the paper.

A Scientific Analysis of Gold Threads Used in Donggungbi-Wonsam(Ceremonial Robe Worn by a Crown Princess, National Folklore Cultural Heritage No.48) (동궁비 원삼에 사용된 금사의 과학적 분석)

  • Lee, Jang-Jon;An, Boyeon;Han, Kiok;Lee, Ryangmi;Yoo, Ji Hyun;Yu, Ji A
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.525-535
    • /
    • 2021
  • This study identified material properties through scientific analysis on Jikgeumdan(satin with gold threads) from Donggungbi-Wonsam and the gold threads used in the embroidery. The Donggungbi-Wonsam's base of gold threads were estimated to have used mulberry fiber's Korean paper(Hanji) because non-wood-based fibers were observed. The X-ray spectrometer showed that the Tongsuseulan of Donggungbi-Wonsam was a flat gold thread of pure gold and Jikgeumdan of flat silver thread of its Saekdong and Hansam. High sulfur levels were detected in the flat silver thread, which appeared to have formed silver sulfide by either manufacturing process using sulfur or conservation environment. he dragon insignia's embroidery is also described as two types twisted gold threads; pure gold and alloying-gold and silver. while dragon insignia's border line is decorated with a twisted gold thread of pure gold. In particular, it was investigated that adhesives such as an animal glue, a protein-based compound by gas chromatography mass spectrometry. Additionally, XRF and Raman spectroscopy analysis on the mixture substances between the metal surface and the base paper of gold threads identified talc and quartz in the gold threads and Seokganju(hematite) in the flat silver threads.

Comparative analysis of Machine-Learning Based Models for Metal Surface Defect Detection (머신러닝 기반 금속외관 결함 검출 비교 분석)

  • Lee, Se-Hun;Kang, Seong-Hwan;Shin, Yo-Seob;Choi, Oh-Kyu;Kim, Sijong;Kang, Jae-Mo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.834-841
    • /
    • 2022
  • Recently, applying artificial intelligence technologies in various fields of production has drawn an upsurge of research interest due to the increase for smart factory and artificial intelligence technologies. A great deal of effort is being made to introduce artificial intelligence algorithms into the defect detection task. Particularly, detection of defects on the surface of metal has a higher level of research interest compared to other materials (wood, plastics, fibers, etc.). In this paper, we compare and analyze the speed and performance of defect classification by combining machine learning techniques (Support Vector Machine, Softmax Regression, Decision Tree) with dimensionality reduction algorithms (Principal Component Analysis, AutoEncoders) and two convolutional neural networks (proposed method, ResNet). To validate and compare the performance and speed of the algorithms, we have adopted two datasets ((i) public dataset, (ii) actual dataset), and on the basis of the results, the most efficient algorithm is determined.