• Title/Summary/Keyword: without fire protection

Search Result 104, Processing Time 0.02 seconds

A model for evaluating the fire resistance of contour-protected steel columns

  • Kodur, V.K.R.;Ghani, B.A.;Sultan, M.A.;Lie, T.T.;El-Shayeb, M.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.559-572
    • /
    • 2001
  • A numerical model, in the form of a computer program, for evaluating the fire resistance of insulated wide-flange steel columns is presented. The three stages associated with the thermal and structural analysis in the calculation of fire resistance of columns is explained. The use of the computer program for tracing the response of an insulated steel column from the initial pre-loading stage to collapse, due to fire, is demonstrated. The validity of the numerical model used in the program is established by comparing the predictions from the computer program with results from full-scale fire tests. Details of fire tests carried out on wide-flange steel columns protected with ceramic fibre insulation, together with results, are presented. The computer program can be used to evaluate the fire resistance of protected wide-flange steel columns for any value of the significant parameters, such as load, section dimensions, column length, type of insulation, and thickness of insulation without the necessity of testing.

A Study on the Calculation of Critical Velocity by Fire Intensity (화재강도에 따른 임계풍속산정에 관한 연구)

  • Kim, Jong-Yoon;Lim, Kyung-Bum;Seo, Tae-Beom;Rie, Dong-Ho;Yoo, Ji-Oh
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.91-97
    • /
    • 2006
  • This study was executed to review feasibility on the calculation of critical velocity with a reduced model of an actual tunnel in order to establish the optimum fire protection system for a fire in road tunnels. In a scaled model about 1/29 of an actual tunnel based on the Froude scaling, critical velocity was calculated by visualizing smoke flow and analyzing correlation with temperature. In the experiment, critical velocities at which smoke backflow length became zero showed a small difference within about 5% compared to results calculated by the Kennedy formula, and the relation between smoke flow and temperature distribution appeared similarly without getting greatly influenced by changes in fire intensity.

Investigation on Fire Resistance of High-Performance Cement Motar with Recycled Fine Aggregate Mixed by Two-Stage Mixing Approach (2단계 배합을 사용한 순환잔골재 혼입 고성능 시멘트 모르타르의 내화성능 연구)

  • Park, Sung-Hwan;Choi, Jun-Ho;Lee, Chi Young;Koo, Min-Sung;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • This study was conducted to confirm the applicability of recycled aggregates as aggregates for structural concrete as a way to respond to the shortage of natural aggregates. The two-stage mixing approach developed by Tam et al. is known to be a method that can improve the mechanical performance of recycled aggregate concrete without the installation of new additional facilities. In this work, modified version of two stage mixing approach, which was used in our earlier work, was introduced to prepare mortar specimens with recycled fine aggregate, and the compressive strength and fire resistance were compared to mortar mixed with normal mixing approach. According to the experimental results from mortar with recycled fine aggregate, the use of two-stage mixing approach was found to be more effective than normal mixing approach for compressive strength development. In addition, the residual strengths of the mortar with two-stage mixing approach was higher than mortar made of normal mixing approach after exposure to 600 and 900 ℃. It is possible to manufacture high-performance cement composites with recycled fine aggregates through the active use of the two-stage mixing approach.

Study on the Fire Resistance Performance of the TSC Beam (TSC 합성보의 내화성능에 관한 연구)

  • Kim, Sung Bae;Choi, Seng Kwan;Lee, Chang Nam;Kim, Sang Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.113-122
    • /
    • 2006
  • The purpose of this paper is to evaluate the fire resistance of the TSC beam, a composite beam composed of a concrete beam enclosed by steel plates. Since a discrepancy was observed between the structural mechanisms of TSC and typical composite beams, the fire performances of the two beams are likewise believed to be partially dissimilar. In this experiment, small and medium-sized TSC beams were tested under given conditions in the laboratory, with/without one of the most widely used spray-on fire protections in Korea. Furthermore, based on the steel and concrete properties under elevated temperatures that were obtained from Eurocode, temperature development across the section was suggested, analyses. To determine the capacity of a modified plastic section, th e fire performance of the model was also examined.

A Study on the Detection Technique of the Flame and Series arc by Poor Contact (접촉 불량에 의한 불꽃 및 직렬아크의 검출 기법에 관한 연구)

  • Woo, Kim Hyun;Hyun, Baek Dong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.24-30
    • /
    • 2012
  • This study is on the method of the detection for flame and series arc which can be happened at poor contact point added a vibration in part of contact point of low voltage line. In general, the causes of electric fire are over current, short circuit, poor contact, ect. The over-current or short circuit among those causes is detected by measuring a instant current value, but poor contact is difficult to detect by measuring a excessive value of the voltage and current and a distortion of waveforms. And therefore, in this paper, it is studied on the optimal technique of the arc judgement using fuzzy logic and MDET (Multi Dimension Estimation Technique). And it carries out the simulation for arc detection and the experiment for controller and load test. In result, the controller and detection algoristhm, is classified with normal wave and abnormal arc wave without relation with each loads and so the controller can detect a series arc successfully.

Assessment of Thermal Protection Performance of Firefighting Garments for Hydrogen Jet Fire (수소제트화재에 대한 특수 방화복의 열 방호 성능시험 평가)

  • UNGGI YOON;BYOUNGJIK PARK;YANGKYUN KIM;SUNGWOOK KANG;OHKKUN LIM
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.3
    • /
    • pp.310-317
    • /
    • 2024
  • In this study, Aimed to develop technology to ensure the safety of firefighters responding to hydrogen incidents and to review the performance of protective super absorbent polymer (SAP) that could help maintain the thermal protection performance of equipment with protective properties. Tests were conducted, including bench-scale and full-scale thermal exposure tests, to review the protective performance of SAP using firefighting garments commonly used by firefighters. The results showed that without SAP application, 2nd degree burn areas were measured at 9.4%, and 3rd degree burn areas at 7.7%. In contrast, when SAP was applied, the percentage of 2nd degree burn areas decreased to 7% on the lower body, and there was no temperature rise causing 3rd degree burns. Therefore, it is expected that by applying SAP to the outer surface of firefighter garments, even under temporarily high temperature conditions such as hydrogen jet flames, thermal damage to firefighters could be protected for a certain period.

Prediction of the Fire Curtain Effect through a Numerical Simulation of a Reduced Scale Model for Fires in Theaters (공연장 화재 축소모형의 전산시뮬레이션을 통한 방화막 영향 예측)

  • Kim, Dong Hwan;Lee, Chi Young;Kim, Duncan
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.51-59
    • /
    • 2018
  • Although a fire curtain plays an important role in preventing smoke from spreading to the auditorium in a theater fire, there has been insufficient research on fire curtains. In this study, to check the accuracy of numerical simulation, for previous experiments using a reduced scale model, a numerical simulation was carried out, and the results were compared with previous experimental data. The fire curtain effect was then predicted numerically. A Fire Dynamics Simulator (FDS) was used, and the natural exhaust vent sizes were set to ~10%, ~5%, and ~1% of the stage floor area. The smoke movement was visualized, and the mass flow rates and temperatures were measured and analyzed. In addition, the law of similarity was used to examine the influence of a fire curtain in a real scale theater fire. Without the fire curtain, the present numerical simulation results were in agreement with the previous experimental data within reasonable accuracy. Meanwhile, the fire curtain affects the mass flow rates through the natural exhaust vent and proscenium opening, as well as the start time of soot outflow to the auditorium. Overall, the present results can be used to develop a fire curtain system.

Study of an Efficient Method for Securing Evidence During the Fire Investigation (화재조사 시 증거물의 효율적인 확보 방안에 관한 연구)

  • Ye, Su-Jo;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.43-47
    • /
    • 2016
  • The recent changes in the judicial system in South Korea, including the stronger trial-centrism and legal market opening, have made fire investigations seek more scientific evidence and structure. The collection of physical evidence is very important to prove the substantial truth of a fire at the court. Without the appropriate physical proof, the credibility of a fire investigation is lost as evidence in a court. Therefore, the fire investigation team needs to carefully handle the fire site and fire initiation evidence because evidence of a fire incident can be destroyed easily by chemical and physical damage. In addition, the fire investigation team also needs to carefully record the collections of any evidence including pictures and their analysis. This study proposed the needs of the procedure manual and guidelines that can provide a step-by-step process of fire investigations in South Korea. This study also helps fire investigation agencies to secure fire-scene evidence to distinctly investigate the facts of fire. The guidelines and manual can eventually improve the ways for the fire investigation processes in South Korea.

Fire Resistance of U-shape Hybrid Composite Beam (신형상 U형 하이브리드 합성보의 내화성능에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup;Ryu, Deog Su;Choi, Seng Kwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.379-388
    • /
    • 2013
  • This paper aims to experimentally investigate the fire resistance of U-shaped hybrid composite beams protected by spay and paint insulations. Subjected to two and three hours of the Standard ISO fire, the flexural performance of 4.4m beams with/without imposed loadings was examined with respect to failure criteria such as deflection and deflection rate of the mid-span and temperatures measured in the steel section. The results demonstrated that the proposed configuration of the composite beam is able to achieve a very competitive 3-hour fire resistance rating in economical aspects.

Comparative Analysis of Flame Retardant Performance of Japanese Cypress Plywood Based on the Main Ingredients of Fire Retardant Paint (도료의 주성분에 따른 편백 합판의 방염성능 비교 분석)

  • Soo-Hee Lim;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2023
  • The purpose of this study is to compare and analyze the flame retardant performance of Japanese cypress(Chamaecyparis obtusa) plywood, commonly used in indoor decoration, furniture, and tableware, by treating it with three different fire retardants with different primary ingredients. The experiment was conducted in compliance with Article 31, Paragraph 2 of the Enforcement Decree of the Fire Facilities Installation and Management Act and Articles 4 and 7-2 of the Flame Retardant Performance Standards. After flame time, after glow time, char length, and char area were measured. As a result, first, after flame time was measured at 0 seconds regardless of whether the flame retardant treatment was applied. Second, after glow time was relatively long, measuring 22.7 seconds without treatment, which is likely due to the weak fire resistance and high concentration of carbon monoxide generated by the chemical characteristics of the Japanese cypress itself. Third, it was confirmed that the effects of the primary ingredient, phosphorus, in the flame retardant treatment varied depending on the technological development of the manufacturers of the same species of Japanese cypress plywood. In the future, it is expected that the results of this study will provide fundamental data to select flame retardant treatments that show high flame retardant performance according to the botanical characteristics of the wood.