• Title/Summary/Keyword: wiretap channel

Search Result 12, Processing Time 0.026 seconds

Capacity-Equivocation Region of a Special Case of Wiretap Channel with Noiseless Feedback

  • Dai, Bin;Han Vinck, A.J.;Luo, Yuan;Ma, Zheng
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • The general wiretap channel with noiseless feedback is first investigated by Ahlswede and Cai, where lower and upper bounds on the secrecy capacity are provided in their work. The upper bound is met with equality only in some special cases. In this paper, we study a special case of the general wiretap channel with noiseless feedback (called non-degraded wiretap channel with noiseless feedback). Inner and outer bounds on the capacity-equivocation region of this special model are provided. The outer bound is achievable if the main channel is more capable than the wiretap channel. The inner bound is constructed especially for the case that the wiretap channel is more capable than the main channel. The results of this paper are further explained via binary and Gaussian examples. Compared with the capacity results for the non-degraded wiretap channel, we find that the security is enhanced by using the noiseless feedback.

Build-in Wiretap Channel I with Feedback and LDPC Codes

  • Wen, Hong;Gong, Guang;Ho, Pin-Han
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.538-543
    • /
    • 2009
  • A wiretap channel I is one of the channel models that was proved to achieve unconditional security. However, it has been an open problem in realizing such a channel model in a practical network environment. The paper is committed to solve the open problem by introducing a novel approach for building wiretap channel I in which the eavesdropper sees a binary symmetric channel (BSC) with error probability p while themain channel is error free. By taking advantage of the feedback and low density parity check (LDPC) codes, our scheme adds randomness to the feedback signals from the destination for keeping an eavesdropper ignorant; on the other hand, redundancy is added and encoded by the LDPC codes such that a legitimate receiver can correctly receive and decode the signals. With the proposed approach, unconditionallysecure communication can be achieved through interactive communications, in which the legitimate partner can realize the secret information transmission without a pre-shared secret key even if the eavesdropper has better channel from the beginning.

Secure Broadcasting Using Multiple Antennas

  • Ekrem, Ersen;Ulukus, Sennur
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.411-432
    • /
    • 2010
  • We consider three different secure broadcasting scenarios: i) Broadcast channels with common and confidential messages (BCC), ii) multi-receiver wiretap channels with public and confidential messages, and iii) compound wiretap channels. The BCC is a broadcast channel with two users, where in addition to the common message sent to both users, a private message, which needs to be kept hidden as much as possible from the other user, is sent to each user. In this model, each user treats the other user as an eavesdropper. The multi-receiver wiretap channel is a broadcast channel with two legitimate users and an external eavesdropper, where the transmitter sends a pair of public and confidential messages to each legitimate user. Although there is no secrecy concern about the public messages, the confidential messages need to be kept perfectly secret from the eavesdropper. The compound wiretap channel is a compound broadcast channel with a group of legitimate users and a group of eavesdroppers. In this model, the transmitter sends a common confidential message to the legitimate users, and this confidential message needs to be kept perfectly secret from all eavesdroppers. In this paper, we provide a survey of the existing information-theoretic results for these three forms of secure broadcasting problems, with a closer look at the Gaussian multiple-input multiple-output (MIMO) channel models. We also present the existing results for the more general discrete memoryless channel models, as they are often the first step in obtaining the capacity results for the corresponding Gaussian MIMO channel models.

Secrecy Performance of Secure Amplify-and-Forward Transmission with Multi-Antenna Relay (다중 안테나 릴레이 기반의 Secure Amplifyand-Forward 전송 시스템의 보안 성능 분석)

  • Hwang, Kyu-Sung;Ju, MinChul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.733-738
    • /
    • 2013
  • In this paper, we consider a physical layer security of an amplify-and-forward (AF) transmission in a presence of an eavesdropper in a wiretap channel. The proposed wiretap channel consists of a source, a destination, a relay, and an eavesdropper. Specifically, we consider that the relay has multiple antennas to exploit a diversity gain and a receive/transmit antenna selection schemes are applied to maximize a signal-to-noise ratio. In a practical point of view, we focus on the practical scenario where the relay does not have any channel state information of the eavesdropper while performing an AF protocol at the relay. For a secrecy performance analysis, we analyze a secrecy outage probability of the proposed system in one-integral form and verify our analysis with the computer-based simulation.

Survey on Physical Layer Security in Downlink Networks

  • Abbas, Mohammed Adil;Hong, Jun-Pyo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • In this paper, we discuss physical layer security techniques in downlink networks, including eavesdroppers. The main objective of using physical layer security is delivering a perfectly secure message from a transmitter to an intended receiver in the presence of passive or active eavesdroppers who are trying to wiretap the information or disturb the network stability. In downlink networks, based on the random feature of channels to terminals, opportunistic user scheduling can be exploited as an additional tool for enhancing physical layer security. We introduce user scheduling strategies and discuss the corresponding performances according to different levels of channel state information (CSI) at the base station (BS). We show that the availability of CSI of eavesdroppers significantly affects not only the beamforming strategy but also the user scheduling. Eventually, we provide intuitive information on the effect of CSI on the secrecy performance by considering three scenarios: perfect, imperfect, and absence of eavesdropper's CSI at the BS.

Wiretapping Strategies for Artificial Noise Assisted Communication in MU-MIMO wiretap channel

  • Wang, Shu;Da, Xinyu;Chu, Zhenyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2166-2180
    • /
    • 2016
  • We investigate the opposite of artificial noise (AN)-assisted communication in multiple-input-multiple-output (MIMO) wiretap channels for the multiuser case by taking the side of the eavesdropper. We first define a framework for an AN-assisted multiuser multiple-input-multiple-output (MU-MIMO) system, for which eavesdropping methods are proposed with and without knowledge of legitimate users' channel state information (CSI). The proposed method without CSI is based on a modified joint approximate diagonalization of eigen-matrices algorithm, which eliminates permutation indetermination and phase ambiguity, as well as the minimum description length algorithm, which blindly estimates the number of secret data sources. Simulation results show that both proposed methods can intercept information effectively. In addition, the proposed method without legitimate users' CSI performs well in terms of robustness and computational complexity.

A Secure MQAM Scheme Based on Signal Constellation Hopping

  • Zhang, Yingxian;Liu, Aijun;Pan, Xiaofei;Ye, Zhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2246-2260
    • /
    • 2014
  • In this paper, a secure multilevel quadrature amplitude modulation (MQAM) scheme is proposed for the physical layer security (PLS) of the wireless communications. In the proposed scheme, each transmitted symbol's signal constellation (SC) is hopping with the control of two unique factors: amplitude distortion (AD) factor and phase hopping (PH) factor. With unknown the two factors, the eavesdropper cannot extract effective information from the received signal. We first introduce a security metric, referred to as secrecy gain, and drive a lower bound on the gain that the secrecy capacity can be improved. Then, we investigate the relationship among the secrecy gain, the signal to noise power ratios (SNRs) of the main and wiretap channels, and the secrecy capacity. Next, we analyze the security of the proposed scheme, and the results indicate that the secrecy capacity is improved by our scheme. Specifically, a positive secrecy capacity is always obtained, whether the quality of the main channel is better than that of the wiretap channel or not. Finally, the numerical results are provided to prove the analytical work, which further suggests the security of the proposed scheme.

물리계층 보안을 위한 보안 전처리 기법의 설계 방법

  • Gwon, Gyeong-Hun;Heo, Jun
    • Information and Communications Magazine
    • /
    • v.31 no.2
    • /
    • pp.71-82
    • /
    • 2014
  • 본 논문에서는 물리 계층에서 보안을 고려한 시스템을 제공하기 위해 Gaussian Wiretap Channel 상황에서 보안 전송을 가능하게 하는 보안 전처리 기법의 설계 방법에 대해서 살펴본다. 무선 통신 채널의 경우, 통신 채널이 누구에게나 개방되어 있기 때문에 무엇보다도 보안에 취약하다. 하지만 숨기고자 하는 보안 메시지를 채널 부호화 및 변조 과정 이전에 보안을 위한 전처리 기법을 적용함으로써 물리계층에서 데이터를 보다 안전하게 전송하는 것이 가능해진다. 이를 위해 기존의 Random하게 생성된 Scrambling matrix를 이용하여 물리계층 보안을 유지하는 전처리 기법을 바탕으로 Scrambling matrix의 hamming distance를 이용하여 높은 보안성 및 신뢰도를 가지는 Scrambling matrix 설계 방법을 제안한다. 또한 부호율 1을 가지는 soft decision decoding 기반의 새로운 보안 전처리 기법을 제안함으로써 물리계층에서의 보안성 확보 가능성을 확인하였다.

Robust Secure Transmit Design with Artificial Noise in the Presence of Multiple Eavesdroppers

  • Liu, Xiaochen;Gao, Yuanyuan;Sha, Nan;Zang, Guozhen;Wang, Shijie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2204-2224
    • /
    • 2021
  • This paper studies secure wireless transmission from a multi-antenna transmitter to a single-antenna intended receiver overheard by multiple eavesdroppers with considering the imperfect channel state information (CSI) of wiretap channel. To enhance security of communication link, the artificial noise (AN) is generated at transmitter. We first design the robust joint optimal beamforming of secret signal and AN to minimize transmit power with constraints of security quality of service (QoS), i.e., minimum allowable signal-to-interference-and-noise ratio (SINR) at receiver and maximum tolerable SINR at eavesdroppers. The formulated design problem is shown to be nonconvex and we transfer it into linear matrix inequalities (LMIs). The semidefinite relaxation (SDR) technique is used and the approximated method is proved to solve the original problem exactly. To verify the robustness and tightness of proposed beamforming, we also provide a method to calculate the worst-case SINR at eavesdroppers for a designed transmit scheme using semidefinite programming (SDP). Additionally, the secrecy rate maximization is explored for fixed total transmit power. To tackle the nonconvexity of original formulation, we develop an iterative approach employing sequential parametric convex approximation (SPCA). The simulation results illustrate that the proposed robust transmit schemes can effectively improve the transmit performance.

Simple Precoding Scheme Considering Physical Layer Security in Multi-user MISO Interference Channel (다중 사용자 MISO 간섭 채널에서 물리 계층 보안을 고려한 간단한 프리코딩 기법)

  • Seo, Bangwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.10
    • /
    • pp.49-55
    • /
    • 2019
  • In this paper, we propose a simple precoding vector design scheme for multi-user multiple-input single-output (MISO) interference channel when there are multiple eavesdroppers. We aim to obtain a mathematical closed-form solution of the secrecy rate optimization problem. For this goal, we design the precoding vector based on the signal-to-leakage plus noise ratio (SLNR). More specifically, the proposed precoding vector is designed to completely eliminate a wiretap channel capacity for refraining the eavesdroppers from detecting the transmitted information, and to maximize the transmitter-receiver link achievable rate. We performed simulation for the performance investigation. Simulation results show that the proposed scheme has better secrecy rate than the conventional scheme over all signal-to-noise ratio (SNR) range even though the special condition among the numbers of transmit antennas, transmitter-receiver links, and eavesdroppers is not satisfied.