• Title/Summary/Keyword: wireless smart sensor network

Search Result 264, Processing Time 0.028 seconds

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.

Technology of Sensors with Human Sensitivity (인간과 같은 감도를 가진 오감센서 기술)

  • Song, Byung-Taeck
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • The Internet of Things era is approaching where all the things are equipped with smart sensors and communicate through internet. The three core technologies of the Internet of Things are 'detection technology' to get information from things and the environment, 'wired and wireless communications and network infrastructure skills' that support to connect things to the internet, and 'service interface technology' that processes the information appropriate to various services. Smart sensor application can expand to smartphone, smart cars, smart home systems, wearable electronic devices, telemedicine systems, and environmental monitoring systems, etc. In particular, technologies that mimic the five human senses. This study reviews the biological principles of the human senses and the principles of operation, research & development status, technology trends and market analysis of the sensors.

Security Enhancement to an Biometric Authentication Protocol for WSN Environment (WSN 환경에서 Biometric 정보를 이용한 안전한 사용자 인증 스킴의 설계)

  • Lee, Youngsook
    • Convergence Security Journal
    • /
    • v.16 no.6_2
    • /
    • pp.83-88
    • /
    • 2016
  • Over recent years there has been considerable growth in interest in the use of biometric systems for personal authentication. Biometrics is a field of technology which has been and is being used in the identification of individuals based on some physical attribute. By using biometrics, authentication is directly linked to the person, rather than their token or password. Biometric authentication is a type of system that relies on the unique biological characteristics of individuals to verify identity for secure access to electronic systems. In 2013, Althobati et al. proposed an efficient remote user authentication protocol using biometric information. However, we uncovered Althobati et al.'s protocol does not guarantee its main security goal of mutual authentication. We showed this by mounting threat of data integrity and bypassing the gateway node attack on Althobati et al.'s protocol. In this paper, we propose an improved scheme to overcome these security weaknesses by storing secret data in device. In addition, our proposed scheme should provide not only security, but also efficiency since sensors in WSN(Wireless Sensor Networks) operate with resource constraints such as limited power, computation, and storage space.

A Multi-Agent Scheme Considering User's Mobility RFID based on Knowledge Management System (사용자의 이동성을 고려한 멀티 에이전트 방식의 RFID 기반 지식 관리 시스템)

  • Seo, Dae-Hee;Baek, Jang-Mi;Cho, Dong-Sub
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.2
    • /
    • pp.99-108
    • /
    • 2010
  • The Wireless Ad Hoc network is discussed as a core technology for ubiquitous computing, and the smart tag technology is currently being actively discussed as a part of the sensor network. Thus, considering its security may advance the realization of ubiquitous computing. RFID (Radio Frequency Identification) technology using the smart tag technology as a part of the sensor network is currently in the limelight. In particular, when RFID is applied to a knowledge management system managing various data, data mobility and management convenience are ensured and automated knowledge service can be provided to users. Accordingly, this paper to proposed a secure scheme for mobility knowledge management systems using multi-agents differentiated from the existing knowledge management systems. Specifically, the proposed scheme designates user's authentication and privilege information in multi-agents and provides effective knowledge service through grouping based on user information. Moreover, even user's movement, the proposed scheme ensures service availability and provides continuous information through communication with multi-agent systems.

The design of Smart flowerpot management system (스마트 화분관리 시스템 설계)

  • Jeon, Pil-kyeong;Park, Suhyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.133-135
    • /
    • 2015
  • This paper is about the design of flowerpot management system which allows you to manage the flowerpot more efficiently and conveniently using Internet of Things when you start to grow plants. IoT connects all things to the network to provide various services to users, it has recently been focused on the center of the IT convergence techniques. So by using the realization sensor based IoT technology the need for research and development of IoT technologies were designed for the system. Basically, Device is using soil humidity sensor and Arduino, Android smart phone and smart light bulb. Transmit the humidity value of the flowerpot that measured by the sensor in a wireless communication, by controlling the state according to the value of the humidity, users can be provided a visual information and set up a flowerpot management and plan.

  • PDF

AN EVENT-BASED MIDDLEWARE FOR ANALYZING CONTEXT INFORMATION UNDER USN ENVIRONMENT

  • Lee, Yong-Mi;Nam, Kwang-Woo;Kim, Hi-Seok;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.568-572
    • /
    • 2007
  • With the proliferation of advanced wireless network and sensor technologies, smart devices under USN(ubiquitous sensor network) environment are capable of collecting context information such as temperature, humidity, weight, and location about objects at real time. Therefore, applications must be able to analyze collected information and notify useful information to wanted users timely. This service can be realized by implementing an event-based middleware. In the middleware, event messages collected from physical environment will be filtered according to profiles that users define in advance and the result will be sent to the interested users. In this paper, we present XML-based event model, ECA-based profile model, and the architecture of an event-based middleware suitable to USN environment. We will also model and describe them using the examples of logistics area. By implementing the system based on the design above, the middleware enable applications or users to easily access to physical sources. The proposed middleware can also apply to not only logistics area but also other various areas under USN environment such as intelligent traffic control system, national disaster management system and u-medical system.

  • PDF

Prioritized Multipath Video Forwarding in WSN

  • Asad Zaidi, Syed Muhammad;Jung, Jieun;Song, Byunghun
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.176-192
    • /
    • 2014
  • The realization of Wireless Multimedia Sensor Networks (WMSNs) has been fostered by the availability of low cost and low power CMOS devices. However, the transmission of bulk video data requires adequate bandwidth, which cannot be promised by single path communication on an intrinsically low resourced sensor network. Moreover, the distortion or artifacts in the video data and the adherence to delay threshold adds to the challenge. In this paper, we propose a two stage Quality of Service (QoS) guaranteeing scheme called Prioritized Multipath WMSN (PMW) for transmitting H.264 encoded video. Multipath selection based on QoS metrics is done in the first stage, while the second stage further prioritizes the paths for sending H.264 encoded video frames on the best available path. PMW uses two composite metrics that are comprised of hop-count, path energy, BER, and end-to-end delay. A color-coded assisted network maintenance and failure recovery scheme has also been proposed using (a) smart greedy mode, (b) walking back mode, and (c) path switchover. Moreover, feedback controlled adaptive video encoding can smartly tune the encoding parameters based on the perceived video quality. Computer simulation using OPNET validates that the proposed scheme significantly outperforms the conventional approaches on human eye perception and delay.

Implementation of factory monitoring system using MQTT and Node-RED (MQTT와 Node-RED를 이용한 설비 모니터링 시스템의 구현)

  • Oh, Se-Chun;Kim, Tae-Hyung;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Recently, various technologies related to IIoT are introduced continuously due to the spread of IoT and smart factory industries. This paper proposes the construction of a two-way wireless network system for monitoring plant equipment using these various technologies. The main technologies used in this thesis are design techniques for micro sensor nodes to monitor facility conditions at various sites, MQTT technology for wireless communication between local server and sensor nodes and Node-RED based design technologies, which store data collected and can be easily presented to users via wired and wireless wires. In addition, a wireless two-way camera system was also implemented in which the screen images of the site can be viewed in the situation room according to the instructions of the situation room when determining abnormal conditions.

Design of the Smart Application based on IoT (사물 인터넷 기반 스마트 응용의 설계)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.5
    • /
    • pp.151-155
    • /
    • 2017
  • With the rapid growth of the up-to-date wireless network and Internet technologies, huge and various types of things around us are connected to the Internet and build the hyper-connected society, and lots of smart applications using these technologies are actively developed recently. IoT connects human, things, space, and data with various types of networks to construct the hyper-connected network that can create, collect, share and appling realtime information. Furthermore, most of the smart applications are concentrated on the service that can collect and store realtime contexts using various sensors and cloud technology, and provide intelligence by making inferences and decisions from them nowadays. In this paper, we design a smart application that can accurately control and process the current state of the specific context in realtime by using the state-of-the-art ICT techniques such as various sensors and cloud technologies on the IoT based mobile computing environment.

Design of a Greenhouse Monitoring System using Arduino and Wireless Communication (아두이노와 무선통신을 이용한 온실 환경 계측 시스템 설계)

  • Sung, Bo Hyun;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.452-459
    • /
    • 2022
  • One of the important factors among the smart farm factors is environmental measurement. This study tried to design an environmental measurement monitoring system through Bluetooth wireless communication with LoRa using the open source programs Arduino, App Inventor, and Node Red. This system consists of Arduino, LoRa shield, temperature and humidity sensor (SHT10), and carbon dioxide sensor (K30). The environmental measurement system is configured as a system that allows the sensor to collect environmental data and transmit it to the user through wireless communication to conveniently monitor the farm environment. As libraries used in the Arduino program, LoRa.h, Sensirion.h, LiquidCrystal_I2C.h and K30_I2C.h were used. When receiving environmental data from the sensor at regular intervals, coding using average value was used for data stabilization. An Android-based app was developed using Node Red and App Inventor program as the user interface. It can be seen that the environmental data for the sensor is well collected with the screen output to the serial screen of Arduino, the screen of the smartphone, and the user interface of Node Red. Through these open source-based platforms and programs will be applied to various agricultural applications.