• Title/Summary/Keyword: wireless connectivity

Search Result 253, Processing Time 0.02 seconds

Energy-Aware Preferential Attachment Model for Wireless Sensor Networks with Improved Survivability

  • Ma, Rufei;Liu, Erwu;Wang, Rui;Zhang, Zhengqing;Li, Kezhi;Liu, Chi;Wang, Ping;Zhou, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3066-3079
    • /
    • 2016
  • Recent years have witnessed a dramatic increase in topology research of wireless sensor networks (WSNs) where both energy consumption and survivability need careful consideration. To balance energy consumption and ensure survivability against both random failures and deliberate attacks, we resort to complex network theory and propose an energy-aware preferential attachment (EPA) model to generate a robust topology for WSNs. In the proposed model, by taking the transmission range and energy consumption of the sensor nodes into account, we combine the characters of Erdős -Rényi (ER) model and Barabasi-Albert (BA) model in this new model and introduce tunable coefficients for balancing connectivity, energy consumption, and survivability. The correctness of our theoretic analysis is verified by simulation results. We find that the topology of WSNs built by EPA model is asymptotically power-law and can have different characters in connectivity, energy consumption, and survivability by using different coefficients. This model can significantly improve energy efficiency as well as enhance network survivability by changing coefficients according to the requirement of the real environment where WSNs deployed and therefore lead to a crucial improvement of network performance.

An Efficient Game Theory-Based Power Control Algorithm for D2D Communication in 5G Networks

  • Saif, Abdu;Noordin, Kamarul Ariffin bin;Dimyati, Kaharudin;Shah, Nor Shahida Mohd;Al-Gumaei, Yousef Ali;Abdullah, Qazwan;Alezabi, Kamal Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2631-2649
    • /
    • 2021
  • Device-to-Device (D2D) communication is one of the enabling technologies for 5G networks that support proximity-based service (ProSe) for wireless network communications. This paper proposes a power control algorithm based on the Nash equilibrium and game theory to eliminate the interference between the cellular user device and D2D links. This leadsto reliable connectivity with minimal power consumption in wireless communication. The power control in D2D is modeled as a non-cooperative game. Each device is allowed to independently select and transmit its power to maximize (or minimize) user utility. The aim is to guide user devices to converge with the Nash equilibrium by establishing connectivity with network resources. The proposed algorithm with pricing factors is used for power consumption and reduces overall interference of D2Ds communication. The proposed algorithm is evaluated in terms of the energy efficiency of the average power consumption, the number of D2D communication, and the number of iterations. Besides, the algorithm has a relatively fast convergence with the Nash Equilibrium rate. It guarantees that the user devices can achieve their required Quality of Service (QoS) by adjusting the residual cost coefficient and residual energy factor. Simulation results show that the power control shows a significant reduction in power consumption that has been achieved by approximately 20% compared with algorithms in [11].

A Study on the Performance of Home Embedded System Using a Wireless Mesh Network (무선 메쉬 네트워크를 이용한 홈 임베디드 시스템의 성능에 대한 연구)

  • Roh, Jae-Sung;Ye, Hwi-Jin
    • Journal of Digital Contents Society
    • /
    • v.8 no.3
    • /
    • pp.323-328
    • /
    • 2007
  • Communication systems beyond 3G should provide more than 100 Mbps for wireless access. In addition to smart antennas, wireless multi-hop networks are proposed to increase the cell size and throughput. For example, Zigbee technology is expected to provide low cost and low power connectivity and can be implemented in wireless mesh networks larger than is possible with Bluetooth. Also, home embedded system using wireless mesh network is one of the key market areas for Zigbee applications. If the line-of-sight path is shadowed by home obstacles, a direct connection between the access point (AP) and the node is not possible at high frequencies. Therefore, by using multi-hop relay scheme the end node can be reached to AP. In this paper, the relaying of data between the AP and the end node is investigated and the throughput and PER(Packet Error Rate) are evaluated in multi-hop wireless mesh networks by using DSSS/BPSK system.

  • PDF

Improvement of WEP Key transmission between APs, during STA Movement in Wireless Environment (무선 LAN 환경에서 단말 이동시 전송되는 AP간 WEP 키 전송 개선 방안)

  • Song, Il-Gyu;Hong, Choong-Seon;Lee, Dae-Young
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.219-228
    • /
    • 2004
  • Wireless LAN(wireless Local Area Network) is constructed network environment by radio in indoors or outdoors environment and that to use electric wave or light instead of wire to client such as PC(Personal Computer), notebook, PDA in hub(Hub) in technological side. Now, among IEEE 802.11 WG(Working Group), there is TGf(Task Group F) that develop standard protocol between AP's(Access Point). In this group, proposed IAPP(Inter Access Point Protocol) to secure interoperability between AP producing in different manufacturer, this offers seamless connectivity between STA by sharing Security Context information or Layer 2 forwarding information between AP without passing through re-authentication process when STAs(Station) move by protocol to secure mobility between AP that differ in equal serve network. In this paper, I wish to suggest method that change avenue of communication of message to block information leakage that can occur at security message or WEP Key transmission between above AP, and uses public key to offer wireless area security little more.

Reduction of the Retransmission Delay for Heterogeneous Devices in Dynamic Opportunistic Device-to-device Network

  • Chen, Sixuan;Zou, Weixia;Liu, Xuefeng;Zhao, Yang;Zhou, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4662-4677
    • /
    • 2018
  • The dynamic opportunistic device-to-device (DO-D2D) network will frequently emerge in the fifth generation (5G) wireless communication due to high-density and fast-moving mobile devices. In order to improve the Quality of Experience (QoE) of users with different computing capacity devices in the DO-D2D network, in this paper, we focus on the study of how to reduce the packets retransmission delay and satisfy heterogeneous devices. To select as many devices as possible to transmit simultaneously without interference, the concurrent transmitters-selecting algorithm is firstly put forward. It jointly considers the number of packets successfully received by each device and the device's connectivity. Then, to satisfy different devices' demands while primarily ensuring the base-layer packets successfully received by all the devices, the layer-cooperation instantly decodable network coding is presented, which is used to select transmission packets combination for each transmitter. Simulation results illustrate that there is an appreciable retransmission delay gain especially in the poor channel quality network compared to the traditional base-station (BS) retransmission algorithm. In addition, our proposed algorithms perform well to satisfy the different demands of users with heterogeneous devices.

Location Awareness Method using Vector Matching of RSSI in Low-Rate WPAN (저속 WPAN에서 수신신호세기의 Vector Matching을 이용한 위치 인식 방식)

  • Nam Yoon-Seok;Choi Eun-Chang;Huh Jae-Doo
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.4
    • /
    • pp.93-104
    • /
    • 2005
  • Recently, RFID/USN is one of fundamental technologies in information and communications networks. Low-Rate WPAN, IEEE802.15.4 is a low-cost communication network that allows wireless connectivity in applications with limited Power and relaxed throughput requirements. Its applications are building automation, personal healthcare, industrial control, consumer electronics, and so on. Some applications require location information. Of course location awareness is useful to improve usability of data Low-Rate WPAN Is regarded as a key specification of the sensor network with the characteristics of wireless communication, computing, energy scavenging, self-networking, and etc. Unfortunately ZigBee alliance propose a lot of applications based on location aware technologies, but the specification and low-rate WPAN devices don't support anything about location-based services. RSSI ( Received Signal Strength indication) is for energy detection to associate, channel selection, and etc. RSSI is used to find the location of a potable device in WLAN. In this paper we studied indoor location awareness using vector matching of RSSI in low-Rate wireless PAN. We analyzed the characteristics of RSSI according to distance and experimented location awareness. We implemented sensor nodes with different shapes and configured the sensor network for the location awareness with 4 fixed nodes and a mobile node. We try to contribute developing location awareness method using RSSI in 3-dimension space.

  • PDF

A study on the Robust and Systolic Topology for the Resilient Dynamic Multicasting Routing Protocol

  • Lee, Kang-Whan;Kim, Sung-Uk
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.255-260
    • /
    • 2008
  • In the recently years, there has been a big interest in ad hoc wireless network as they have tremendous military and commercial potential. An Ad hoc wireless network is composed of mobile computing devices that use having no fixed infrastructure of a multi-hop wireless network formed. So, the fact that limited resource could support the network of robust, simple framework and energy conserving etc. In this paper, we propose a new ad hoc multicast routing protocol for based on the ontology scheme called inference network. Ontology knowledge-based is one of the structure of context-aware. And the ontology clustering adopts a tree structure to enhance resilient against mobility and routing complexity. This proposed multicast routing protocol utilizes node locality to be improve the flexible connectivity and stable mobility on local discovery routing and flooding discovery routing. Also attempts to improve route recovery efficiency and reduce data transmissions of context-awareness. We also provide simulation results to validate the model complexity. We have developed that proposed an algorithm have design multi-hierarchy layered networks to simulate a desired system.

Design of Wireless HD Image Transmission System with Bidirectional CEC Function (양방향 CEC 기능을 갖는 무선 고화질 이미지 전송 시스템의 설계)

  • Kim, Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 2011
  • Nowadays it is necessary to replace electrical wires with another intelligent connection method because the consumers, who have much experience with mobile smart devices, are expecting easier and smarter connectivity in their home electronics such as wireless linking. In this paper a bidirectional CEC control scheme is newly proposed to expand the controllability from one to two way in a millimeter band image transmission system because two degree of freedom controllability presents more intelligent convenience in HDMI interface systems. Experimental study shows the feasibility of the proposed system as an advanced image transmission solution in millimeter band including an intelligent 2 DOF CEC interface with the performance result of 3.0 Gbps transmission band for 1080p full-HD image steaming.

Channel Allocation in Multi-radio Multi-channel Wireless Mesh Networks: A Categorized Survey

  • Iqbal, Saleem;Abdullah, Abdul Hanan;Hussain, Khalid;Ahsan, Faraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.5
    • /
    • pp.1642-1661
    • /
    • 2015
  • Wireless mesh networks are a special type of broadcast networks which cover the qualifications of both ad-hoc as well as infrastructure mode networks. These networks offer connectivity to the last mile through hop to hop communication and by comparatively reducing the cost of infrastructure in terms of wire and hardware. Channel assignment has always been the focused area for such networks specifically when using non-overlapping channels and sharing radio frequency spectrum while using multiple radios. It has always been a challenge for mesh network on impartial utilization of the resources (channels), with the increase in users. The rational utilization of multiple channels and multiple radios, not only increases the overall throughput, capacity and scalability, but also creates significant complexities for channel assignment methods. For a better understanding of research challenges, this paper discusses heuristic methods, measurements and channel utilization applications and also examines various researches that yield to overcome this problem. Finally, we highlight prospective directions of research.

TRaffic-Aware Topology Control Algorithm in Wireless Sensor Networks (무선 센서 네트워크에서 트래픽 정보를 이용한 토폴로지 제어 기법)

  • Jung, Yeon-Su;Choi, Hoon;Baek, Yun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.510-517
    • /
    • 2008
  • In wireless sensor networks, a number of nodes deployed in dense manner should be self-configured to establish a topology that provides communication and sensing coverage under stringent energy constraints. To establish an efficient topology, we propose the TRaffic-Aware Topology control (TRAT) algorithm that reduces energy dissipation by considering total amount of data flows in the network. Our algorithm controls the number of active nodes with traffic information and adjusts nodal transmission power by estimating amount of data flows. According to the result, the proposed algorithm shows about 30% better performance than the other methods in terms of energy efficiency.