• Title/Summary/Keyword: wire spacing

Search Result 59, Processing Time 0.026 seconds

Computation of V-I characteristics in wire-plate electrostatic precipitators (선대 평판 전기 집진기의 V-I 특성 계산)

  • Kim, Kill-Sin;Shim, Jae-Hak;Ko, Kwang-Cheol;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1675-1677
    • /
    • 1997
  • In this paper we study the voltage-current characteristics inside the wire-plate precipitators by numerically solving the Poisson's equation and current continuity equation. The effects of a wire size, wire-wire spacing, wire-plate spacing and effective mobility have been considered.

  • PDF

A Study on the Optimal Divergence Spacing of the Connecting Grounding Rod to the Dangerous Voltage in the Global Earthing Network of Urban Rail Transit (도시철도 통합접지망에서의 위험전압에 따른 연접접지봉의 최적 분기간격에 관한 연구)

  • Jung, Ho-Sung;Park, Young;Kim, Hyeng-Chul;Kim, Jin-Hee;Kim, Jae-Moon;Cho, Dae-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1374-1379
    • /
    • 2012
  • Urban rail transit tends to global grounding system in order to control ground potential rise and potential differences between electric equipments. In addition, global grounding system can discharge the large capacity surge current to the ground safely. Since some railway electric equipments are installed all section of line, the global grounding system connected with the connecting grounding wire is more effectively. However, if the fault occurred in the connecting grounding wire area, some dangerous voltage is generated. So, the installation of additional grounding rod will be required. In this study, the global grounding system is simulated using CDEGS program to analyze the divergence spacing of additional ground rod depending on dangerous electric potential characteristics. Grounding net of the each station is modelled in depending on the size of the platform, and the spacing of the connecting grounding rod are compared 50m, 100m, 250m and 400m. Simulation results considering of earth resistivity and underground condition of the connecting grounding wire, spacing of the connecting grounding rod is that less than 250m to spacing of the ground rod was appropriately confirmed.

A Minimum Crosstalk Wire Spacing Method by Linear Programming (선형프로그래밍에 의한 최소 혼신 배선간 간격조정방법)

  • 전재한;임종석
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.62-72
    • /
    • 2003
  • This paper deals with a crosstalk minimization method by wire spacing. The suggested method uses linear programming method and consider crosstalk of both horizontal segments and vertical segments. In this paper, we suggest a method which can predict the coupling length between vertical segments in the final routing result using longest path algorithm. By the suggested method, we can make LP problem without integer variable. Therefore, it is much faster to solve the problem. In the case of crosstalk optimization, the suggested method optimized peak crosstalk 11.2%, and 3% total crosstalk more than wire perturbation method. The execution time of the suggested method is as fast as it takes 11 seconds when Deutsch is optimized.

Study of the Characteristics and Crystal Growth of a shorted Wire by Overcurrent (과전류에 의해 단락된 전선의 결정성장 특성에 관한 연구)

  • Park, Jin-Young;Bang, Sun-Bae;Ko, Young-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • If an overcurrent exceeding the rated value is applied to an electric wire, the temperature of the electric wire increases, and the electric wire covering deteriorates to cause a short circuit. The upper limit temperature of the wire varies according to the magnitude of the overcurrent. When a short circuit occurs at each upper temperature limit, a cooling speed difference occurs during the solidification process due to the temperature difference between the short circuit temperature and the wire surface temperature. At this time, the pattern characteristics of the dendritic structure formed on the molten cross section are different. In this study, the upper temperature limit, which varied according to the overcurrent magnitude, was measured. At the time a short circuit occurred, the second branch spacing (dendrite Arm Spacing : DAS) of the dendrite was analyzed and the numerical value was quantified. The experimental results showed that the upper temperature limit increases with the magnitude of the overcurrent, and that the second branch spacing increases with increasing wire temperature.

FE-simulation of Drawing Process for Al-1%Si Bonding Wire Considering Fine Si Particle (미세 Si 입자를 고려한 Al-1%Si 본딩 와이어의 신선공정해석)

  • Ko, D.C.;Hwang, W.H.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.421-427
    • /
    • 2006
  • Drawing process of Al-1%Si bonding wire considering fine Si particle is analyzed in this study using FE-simulation. Al-1%Si boding wire requires electric conductivity because Al-1%Si bonding wire is used for interconnection in semiconductor device. About 1% of Si is added to Al wire for dispersion-strengthening. Distribution and shape of fine Si particle have strongly influence on the wire drawing process. In this study, therefore, the finite-element model based on the observation of wire by continuous casting is used to analyze the effect of various parameters, such as the reduction in area, the semi-die angle, the aspect ratio, the inter-particle spacing and orientation angle of the fine Si particle on wire drawing processes. The effect of each parameter on the wire drawing process is investigated from the aspect of ductility and defects of wire. From the results of the analysis, it is possible to obtain the important basic data which can be guaranteed in the fracture prevention of Al-1 %Si wire.

A Stydy on Steel Wire Fiber Reinforced Refractory Castable (철근 캐스터블 내화물의 고온특성에 관한 연구)

  • 박금철;최영섭;한문희;장영재;박근원
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.2
    • /
    • pp.69-74
    • /
    • 1980
  • This study deals with the wire content, wire diameter, aspect ratio , it's arrangement of steel, wire fiber and the sorts of castable which affected the character of steel wire fiber reinformced refractory castable. Two kinds of alumina based refractory castables, one is for 1650℃ and the other is for 1800℃, and stainless steel which is SUS 304 type 0.25, 0.34 , 0.37 and 0.50m/min diameter were used respectively. Aspect ratio was adjusted to 50, 75, 100 and steel fiber content was also adjusted to 1-4wt% each. The results of the experiment were as follows : 1. At firing temperature around 1,000℃, MOR is increased with increasing wire content and aspect ratio with decreasing firing temperature, which depends on the Romualdi's Fiber Spacing Theory. But for calculation of the fiber spacing, Swamy equation is more a aplicable to the extensive fiber mixing conditions. However, the condition differs from the above at firing temperature around 1,350℃ ,because of the degradation of wire and the progress of sintering of castable. 2. Linear change is getting larger corresponding to the increase of wire content, and the spaling resistivity is increasing corresponding to the increase of wire content and to aspect ratio, and with decreasing wire diameter. 3. Firing shrinkage under load is getting greater as higher wire content, and the shrinkage of the test pieces which fiber is vertically oriented is getting greater than the test pieces which fiber is randomly oriented.

  • PDF

FEM analysis of Pearlite Lamella Structure of High Carbon Steel on Drawing Process Conditions (신선가공조건에 따른 고탄소강 선재 Pearlite 층상구조의 유한요소해석)

  • Kim Hyun-soo;Bae Chul-min;Lee Choong-yeol;Kim Byung-min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.325-332
    • /
    • 2005
  • This paper presents a study on defects in pearlite lamella structure of high carbon steel by means of finite-element method(FEM) simulation. High carbon pearlite steel wire is characterized by its nano-sized microstructure feature of alternation ferrite and cementite. FEM simulation was performed based on a suitable FE model describing the boundary conditions and the exact material behavior. Due to the lamella structure in high carbon pearlite steel wire, material plastic behavior was taken into account on deformation of ferrite and cementite. The effects of many important parameters(reduction in area, semi-die angle, lamella spacing, cementite thickness) on wire drawing process can be predicted by DEFORM-2D. It is possible to obtain the important basic data which can be guaranteed in the ductility of high carbon steel wire by using FEM simulation.

Analysis of drawing process of the Al-Si wire using FEM (유한요소해석을 이용한 Al-Si 선재의 인발 공정해석)

  • Hwang W. H.;Kim B. M.;Kim W. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.89-92
    • /
    • 2004
  • This paper is concerned with the drawing process of Al-Si wire. In this study, the finite-element model established in previous work was used to analyze the effects of various forming parameters, which included the reduction in area, the semi-die angle, the aspect ratio and the inter-particle spacing of the Si in drawing processes. The finite-element results gave the consolidation condition. From the results of analysis, the effects of each forming parameter were determined. It is possible to obtain the important basic data which can be guaranteed in the fracture prevention of Al-Si wire by using FEM simulation.

  • PDF

Inplane Shear Behavior of Concrete Walls Reinforced by Welded Wire Fabric (용접철망 콘크리트 벽체의 전단거동 연구)

  • Kim, Woo;Chung, Lan;Yang, Ji-Soo;Yoon, Young-Ho;Kim, Dae-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.130-135
    • /
    • 1993
  • Twelve 1/2 scale modeled wall specimens were tested statically up to failure to investigate she shear behavior of concrete walls reinforced with welded wire fabric. major variables were spacing of reinforcing bars, type of reinforcing bar(rebar, welded sire fabric, knurling wire) and the existence of tied column type reinforcement

  • PDF

Effects of Tensile Properties and Microstructure on Abrasive Wear for Ingot-Slicing Saw Wire (잉곳 슬라이싱용 Saw Wire의 연삭마모에 미치는 인장특성과 미세조직의 영향)

  • Hwang, Bin;Kim, Dong-Yong;Kim, Hoi-Bong;Lim, Seung-Ho;Im, Jae-Duk;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.334-340
    • /
    • 2011
  • Saw wires have been widely used in industries to slice silicon (Si) ingots into thin wafers for semiconductor fabrication. This study investigated the microstructural and mechanical properties, such as abrasive wear and tensile properties, of a saw wire sample of 0.84 wt.% carbon steel with a 120 ${\mu}M$ diameter. The samples were subjected to heat treatment at different linear velocities of the wire during the patenting process and two different wear tests were performed, 2-body abrasive wear (grinding) and 3-body abrasive wear (rolling wear) tests. With an increasing linear velocity of the wire, the tensile strength and microhardness of the samples increased, whereas the interlamellar spacing in a pearlite structure decreased. The wear properties from the grinding and rolling wear tests exhibited an opposite tendency. The weight loss resulting from grinding was mainly affected by the tensile strength and microhardness, while the diameter loss obtained from rolling wear was affected by elongation or ductility of the samples. This result demonstrates that the wear mechanism in the 3-body wear test is much different from that for the 2-body abrasive wear test. The ultra-high tensile strength of the saw wire produced by the drawing process was attributed to the pearlite microstructure with very small interlamellar spacing as well as the high density of dislocation.