• Title/Summary/Keyword: winkler element

Search Result 92, Processing Time 0.026 seconds

Stability and Vibration of Non-Uniform Timoshenko Beams resting on Two-Parameter Elastic Foundations (두 파라메타 탄성기초위에 놓인 불균일 Timoshenko보의 안정성과 진동)

  • Lee, Jong-Won;Ryu, Bong-Jo;Lee, Gyu-Seop;Kong, Yong-Sik;Oh, Bu-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.596-601
    • /
    • 2000
  • The paper presents free vibration and stability analyses of a non-uniform Timoshenko beam resting on a two-parameter elastic soil. The soil parameters can vary along the spat and is assumed to be two-parameter model including the effects of both transverse shear deformation and elastic foundation Governing equations related to the vibration and the stability of the beam are derived from Hamilton's principle, and the resulting eigen-value problems can be solved to give natural frequencies and critical force by finite element method. Numerical results for both vibration and stability of beams under an axial force are presented and compared with other available solutions. Finally, vibration frequencies, mode shapes and critical forces are investigated for various thickness ratios, shear foundation parameter, Winkler foundation parameter and boundary conditions of tapered Timoshenko beams.

  • PDF

Stability Analysis of Soil Nailed Slope by Discrete Element Method (개별요소법을 이용한 지반네일에 의해 보강된 굴착사면의 안정해석)

  • 김주용;김준석
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.49-62
    • /
    • 1995
  • Soil nailing has been widely rosed during the last two decades to stabilize sheep excavated slopes in several countries. In thin study, the discrete element method has been applied to evaluate the stability of the reiuorced slope. This method is capable of not only estimat ins tensile and sheer stresses mobilized in nails but also providing individual safety factors of soil and nails, It has been assumed that the nailed slope be comprised of slices connected with elastoplastic twinkler springs. A reasonable mechanism is applied for representing the behavior between nails and adj scent soils. Taking into account for the bequence of construction the developed method well predicts the measured tensile forces developed in nails so that it is possible to appropriately evaluate the overall safety factor.

  • PDF

Effect of an Intermediate Support on the Stability of Elastic Material Subjected to Dry Friction Force (건성마찰력을 받는 탄성재료의 안정성에 미치는 중간 지지의 효과)

  • 류시웅;장탁순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.129-135
    • /
    • 2004
  • This paper discussed on the effect of an intermediate support on the stability of elastic material subjected to dry friction force. It is assumed in this paper that the dry frictional force between a tool stand and an elastic material can be modeled as a distributed follower force. The elastic material on the friction material is modeled for simplicity into an elastic beam on Winkler-type elastic foundation. The stability of beams on the elastic foundation subjected to distributed follower force is formulated by using finite element method to have a standard eigenvalue problem. The first two eigen-frequencies are obtained to investigate the dynamics of the beam. The eigen-frequencies yield the stability bound and the corresponding unstable mode. The considered beams lose its stability by flutter or divergence, depending on the location of intermediate support.

A dynamic foundation model for the analysis of plates on foundation to a moving oscillator

  • Nguyen, Phuoc T.;Pham, Trung D.;Hoang, Hoa P.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1019-1035
    • /
    • 2016
  • This paper proposes a new foundation model called "Dynamic foundation model" for the dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation during vibration. By using finite element method and the principle of dynamic balance, the governing equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark's time integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. Also, the effects of mass and damping ratio of system components, stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on dynamic responses are investigated. A very important role of these factors will be shown in the dynamic behavior of the plate.

Buckling Stability of Timoshenko Beams on Two-Parameter Elastic Foundations under an Axial Force (축력을 받고 두 파라메타 탄성기초 위에 놓인 티모센코 보의 좌굴 안정성)

  • 정승호
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.2
    • /
    • pp.111-122
    • /
    • 1999
  • The paper presents a stability analysis of uniform Timoshenko beams resting on two-parameter elastic foundations. The two-parameter elastic foundations were considered as a shearing layer and Winkler springs in soil models. Governing equations of motion were derived using the Hamilton's principle and finite element analysis was performed and the eigenvalues were obtained for the stability analysis. The numerical results for the buckling stability of beams under axial forces are demonstrated and compared with the exact or available confirmed solutions. Finally, several examples were given for Euler-Bernoulli and Timoshenko beams with various boundary conditions.

  • PDF

Nonlinear analysis of connectors applied on concrete composite constructions

  • Winkler, B.;Bianchi, P.;Siemers, M.
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.91-102
    • /
    • 2006
  • To place concrete overlays has become a standard application in the strengthening and rehabilitation of concrete structures such as bridges, tunnels, parking decks and industrial buildings. In general, connectors are used to ensure a monolithic behavior of the two concrete layers. Within the framework of the development of a new connector wedge splitting tests and shear tests were performed, in addition nonlinear finite element analyses were applied to investigate the load transfer behavior of the connectors for different prototypes. The numerical simulation results were compared to experimental data. The computed load-displacement curve demonstrates good correspondence with the curves obtained in the experiments, and the experimental crack patterns are reasonably simulated by the computed crack propagation. Both numerical and experimental investigations on the wedge splitting test and on the shear test served as basis for the development of new type of connectors.

Response of rigid footing on reinforced granular fill over soft soil

  • Ramu, K.;Madhav, Madhira R.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.281-302
    • /
    • 2010
  • An extended model for the response of a rigid footing on a reinforced foundation bed on super soft soil is proposed by incorporating the rough membrane element into the granular bed. The super soft soil, the granular bed and the reinforcement are modeled as non-linear Winkler springs, non-linear Pasternak layer and rough membrane respectively. The hyperbolic stress-displacement response of the super soft soil and the hyperbolic shear stress-shear strain response of the granular fill are considered. The finite deformation theory is used since large settlements are expected to develop due to deformation of the super-soft soil. Parametric studies quantify the effect of each parameter on the stress-settlement response of the reinforced foundation bed, the settlement and tension profiles.

Soil foundation effect on the vibration response of concrete foundations using mathematical model

  • Dezhkam, Behzad;Yaghfoori, Ali
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.221-225
    • /
    • 2018
  • In this paper, vibration analysis of concrete foundations resting on soil medium is studied. The soil medium is simulated by Winkler model considering spring element. The concrete foundation is modeled by thick plate elements based on classical plate theory (CPT). Utilizing energy method consists of potential energy, kinetic energy and external works in conjunction with Hamilton's principle, the motion equations are derived. Assuming the simply supported boundary condition for the concrete foundation, the Navier method is used for calculating the frequency of the structure. The effect of different parameters such as soil medium, mode numbers, length to width ratio and length to thickness ratio of the concrete foundation are shown on the frequency of the structure. At the first, the results are validated with other published works in order to show the accuracy of the obtained results. The results show that considering the soil medium, the frequency of the structure increases significantly.

Analysis of Joint Behavior in Cement Concrete Pavements (시멘트 콘크리트 포장체 줄눈부의 거동해석)

  • 변근주;이상민;임갑주;한봉완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.1-6
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the construction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have beem deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechanism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical program is developed using these joint models.

  • PDF

Study on the Stability of Elastic Material Subjected to Dry Friction Force (건성마찰력을 받는 탄성재료의 안정성에 관한 연구)

  • Ko, Jun-Bin;Jang, Tag-Soon;Ryu, Si-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.143-148
    • /
    • 2004
  • This paper discussed on the stability of elastic material subjected to dry friction force for low boundary conditions: clamped free, clamped-simply supported, simply supported-simply supported, clamped-clamped. It is assumed in this paper that the dry frictional force between a tool stand and an elastic material can be modeled as a distributed follower force. The friction material is modeled for simplicity into a Winkler-type elastic foundation. The stability of beams on the elastic foundation subjected to distribute follower force is formulated by using finite element method to have a standard eigenvalue problem. It is found that the clamped-free beam loses its stability in the flutter type instability, the simply supported-simply supported beam loses its stability in the divergence type instability and the other two boundary conditions the beams lose their stability in the divergence-flutter type instability.