• 제목/요약/키워드: wind velocity profile

검색결과 88건 처리시간 0.026초

섬의 후류가 해상 풍황자료에 미치는 영향 분석 (Island Wake Effect on the Offshore Wind Data)

  • 장재경;유기완;이준신;김영남
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.460-464
    • /
    • 2009
  • This study investigates the wake effect of an island to develop the offshore wind farm. The main wind direction can be determined from the data processing of the QuikSCAT satellite data around the Wi-do island at south-west sea of the Korean peninsula. Computational fluid dynamics is adopted to analyze the wake effect. From this study the velocity defects due to the wake are revealed. In particular about 5% velocity defect is observed at 80m hub height from the sea surface.

  • PDF

A combination method to generate fluctuating boundary conditions for large eddy simulation

  • Wang, Dayang;Yu, X.J.;Zhou, Y.;Tse, K.T.
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.579-607
    • /
    • 2015
  • A Combination Random Flow Generation (CRFG) technique for obtaining the fluctuating inflow boundary conditions for Large Eddy Simulation (LES) is proposed. The CRFG technique was developed by combining the typical RFG technique with a novel calculation of k and ${\varepsilon}$ to estimate the length- and time-scales (l, ${\tau}$) of the target fluctuating turbulence field used as the inflow boundary conditions. Through comparatively analyzing the CRFG technique and other existing numerical/experimental results, the CRFG technique was verified for the generation of turbulent wind velocity fields with prescribed turbulent statistics. Using the turbulent velocity fluctuations generated by the CRFG technique, a series of LESs were conducted to investigate the wind flow around S-, R-, L- and U-shaped building models. As the pressures of the models were also measured in wind tunnel tests, the validity of the LES, and the effectiveness of the inflow boundary generated by the CRFG techniques were evaluated through comparing the simulation results to the wind tunnel measurements. The comparison showed that the LES accurately and reliably simulates the wind-induced pressure distributions on the building surfaces, which indirectly validates the CRFG technique in generating realistic fluctuating wind velocities for use in the LES. In addition to the pressure distribution, the LES results were investigated in terms of wind velocity profiles around the building models to reveal the wind flow dynamics around bluff bodies. The LES results quantitatively showed the decay of the bluff body influence when the flow moves away from the building model.

Field monitoring of boundary layer wind characteristics in urban area

  • Li, Q.S.;Zhi, Lunhai;Hu, Fei
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.553-574
    • /
    • 2009
  • This paper presents statistical analysis results of wind speed and atmospheric turbulence data measured from more than 30 anemometers installed at 15 different height levels on 325 m high Beijing Meteorological Tower and is primarily intended to provide useful information on boundary layer wind characteristics for wind-resistant design of tall buildings and high-rise structures. Profiles of mean wind speed are presented based on the field measurements and are compared with empirical models' predictions. Relevant parameters of atmospheric boundary layer at urban terrain are determined from the measured wind speed profiles. Furthermore, wind velocity data in longitudinal, lateral and vertical directions, which were recorded from an ultrasonic anemometer during windstorms, are analyzed and discussed. Atmospheric turbulence information such as turbulence intensity, gust factor, turbulence integral length scale and power spectral densities of the three-dimensional fluctuating wind velocity are presented and used to evaluate the adequacy of existing theoretical and empirical models. The objective of this study is to investigate the profiles of mean wind speed and atmospheric turbulence characteristics over a typical urban area.

The influence of vehicles on the flutter stability of a long-span suspension bridge

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Zhang, Jianren;Chen, Suren;He, Xuhui
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.275-292
    • /
    • 2015
  • The presence of traffic on a slender long-span bridge deck will modify the cross-section profile of the bridge, which may influence the flutter derivatives and in turn, the critical flutter wind velocity of the bridge. Studies on the influence of vehicles on the flutter derivatives and the critical flutter wind velocity of bridges are rather rare as compared to the investigations on the coupled buffeting vibration of the wind-vehicle-bridge system. A typical streamlined cross-section for long-span bridges is adopted for both experimental and analytical studies. The scaled bridge section model with vehicle models distributed on the bridge deck considering different traffic flow scenarios has been tested in the wind tunnel. The flutter derivatives of the modified bridge cross section have been identified using forced vibration method and the results suggest that the influence of vehicles on the flutter derivatives of the typical streamlined cross-section cannot be ignored. Based on the identified flutter derivatives, the influence of vehicles on the flutter stability of the bridge is investigated. The results show that the effect of vehicles on the flutter wind velocity is obvious.

평균풍속 및 난류 예측을 위한 도심지 모델 (Urban Model for Mean Flow and Turbulence)

  • 김병구;이창훈;김석철;주석준;장동두;심우섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2923-2928
    • /
    • 2007
  • The study of model for velocity and turbulence within the urban canopy was carried out. To evaluate existing urban model we conducted wind tunnel experiment and large-eddy simulation (LES). Mean velocity profile and turbulence are measured within simple three different obstacle arrays. To obtain supplemental data and to verify morphological model large-eddy simulation was performed. Several methods have been used to achieve embodying the flow field in urban area. Recently, morphological method obtaining flow parameters from the statistical or physical representation of obstacle elements is a arising method. It was found that all morphological model, evaluated in this study, over predict the friction velocity, most sensitive one among the flow parameters. Velocity and turbulence in the urban canopy layer were improved by the correction using 'true' friction velocity.

  • PDF

A 6 m cube in an atmospheric boundary layer flow -Part 2. Computational solutions

  • Richards, P.J.;Quinn, A.D.;Parker, S.
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.177-192
    • /
    • 2002
  • Computation solutions for the flow around a cube, which were generated as part of the Computational Wind Engineering 2000 Conference Competition, are compared with full-scale measurements. The three solutions shown all use the RANS approach to predict mean flow fields. The major differences appear to be related to the use of the standard $k-{\varepsilon}$, the MMK $k-{\varepsilon}$ and the RNG $k-{\varepsilon}$ turbulence models. The inlet conditions chosen by the three modellers illustrate one of the dilemmas faced in computational wind engineering. While all modeller matched the inlet velocity profile to the full-scale profile, only one of the modellers chose to match the full-scale turbulence data. This approach led to a boundary layer that was not in equilibrium. The approach taken by the other modeller was to specify lower inlet turbulent kinetic energy level, which are more consistent with the turbulence models chosen and lead to a homogeneous boundary layer. For the $0^{\circ}$ case, wind normal to one face of the cube, it is shown that the RNG solution is closest to the full-scale data. This result appears to be associated with the RNG solution showing the correct flow separation and reattachment on the roof. The other solutions show either excessive separation (MMK) or no separation at all (K-E). For the $45^{\circ}$ case the three solutions are fairly similar. None of them correctly predicting the high suctions along the windward edges of the roof. In general the velocity components are more accurately predicted than the pressures. However in all cases the turbulence levels are poorly matched, with all of the solutions failing to match the high turbulence levels measured around the edges of separated flows. Although all of the computational solutions have deficiencies, the variability of results is shown to be similar to that which has been obtained with a similar comparative wind tunnel study. This suggests that the computational solutions are only slightly less reliable than the wind tunnel.

Observed characteristics of tropical cyclone vertical wind profiles

  • Giammanco, Ian M.;Schroeder, John L.;Powell, Mark D.
    • Wind and Structures
    • /
    • 제15권1호
    • /
    • pp.65-86
    • /
    • 2012
  • Over the last decade substantial improvements have been made in our ability to observe the tropical cyclone boundary layer. Low-level wind speed maxima have been frequently observed in Global Positioning System dropwindsonde (GPS sonde) profiles. Data from GPS sondes and coastal Doppler radars were employed to evaluate the characteristics of tropical cyclone vertical wind profiles in open ocean conditions and at landfall. Changes to the mean vertical wind profile were observed azimuthally and with decreasing radial distance toward the cyclone center. Wind profiles within the hurricane boundary layer exhibited a logarithmic increase with height up to the depth of the wind maximum.

도플러 라이다를 이용한 ICE-POP 2018 기간 수평바람 연직 프로파일 산출 및 정확도 평가 (Retrieval and Accuracy Evaluation of Horizontal Winds from Doppler Lidars During ICE-POP 2018)

  • 김권일;류근수;백승우;신규희;이규원
    • 대기
    • /
    • 제32권2호
    • /
    • pp.163-178
    • /
    • 2022
  • This study aims to evaluate the accuracy of retrieved horizontal winds with different quality control methods from three Doppler lidars deployed over the complex terrain during the PyeongChang 2018 Olympic and Paralympic games. To retrieve the accurate wind profile, this study also proposes two quality control methods to distinguish between meteorological signals and noises in the Doppler velocity field, which can be broadly applied to different Doppler lidars. We evaluated the accuracy of retrieved winds with the wind measurements from the nearby or collocated rawinsondes. The retrieved wind speed and direction show a good agreement with rawinsonde with a correlation coefficient larger than 0.9. This study minimized the sampling error in the wind evaluation and estimation, and found that the accuracy of retrieved winds can reach ~0.6 m s-1 and 3° in the quasi-homogeneous wind condition. We expect that the retrieved horizontal winds can be used in the high-resolution analysis of the horizontal winds and provide an accurate wind profile for model evaluation or data assimilation purposes.

HeMOSU-1 풍속자료를 이용한 연직 분포함수의 매개변수 추정 및 분석 (Estimation and Analysis of the Vertical Profile Parameters Using HeMOSU-1 Wind Data)

  • 고동휘;조홍연;이욱재
    • 한국해안·해양공학회논문집
    • /
    • 제33권3호
    • /
    • pp.122-130
    • /
    • 2021
  • 다양한 목표 고도에서의 풍속 추정은 해상풍력 구조물 설계 및 풍파 추정 등의 분야에서 매우 중요한 요소이다. 그러나 풍속 관측 자료가 특정 고도에 한정되어 있기 때문에 다른 고도에서의 풍속 추정은 일반적으로 사용되는 연직 분포함수와 평균적인 매개변수를 이용하여 추정한다. 본 연구에서는 HeMOSU-1 관측타워의 다양한 고도에서 측정한 풍속 자료를 이용하여 Power 함수, 대수함수의 매개변수를 추정하고 그 변동 양상을 분석하였다. 매개변수 추정 결과, Power 함수의 지수 매개변수는 일반적으로 제안되는 0.14(= 1/7) 보다 작은 평균 0.10 정도로 추정되었으며, 변동 범위도 0.0~0.3 정도로 파악되었다. 대수분포함수의 경우, 매개변수는 마찰속도와 조도 길이로 그 범위가 풍속에 따라 차이를 보이고 있으며, 변동 범위는 각각 0~10 (m/s), 0.0~1.0 (m) 정도로 파악되었으며, 일반적으로 제시되는 범위와는 그 차이를 보이는 것으로 파악되었다. 이러한 차이는 기존의 고도 분포함수가 대기 중립 조건을 가정하고 있는 영향으로 판단되며, 보다 정확한 추정을 위해서는 대기조건을 고려한 비선형 고도분포함수의 도입이 필요하다.

An investigation of the structure of ensemble averaged extreme wind events

  • Scarabino, A.;Sterling, M.;Richards, P.J.;Baker, C.J.;Hoxey, R.P.
    • Wind and Structures
    • /
    • 제10권2호
    • /
    • pp.135-151
    • /
    • 2007
  • This paper examines the extreme gust profiles obtained by conditionally sampling full-scale velocity data obtained in the lower part of the atmospheric boundary layer. It is demonstrated that three different types of behaviour can be observed in the streamwise component of velocity. In all cases the corresponding vertical velocity component illustrates similar behaviour. An idealised horseshoe vortex model and a downburst model are investigated to examine if such structures can explain the behaviour observed. In addition, an empirical model is developed for an isolated gust corresponding to each of the three types of behaviour observed. It is possible that the division of the gust profile into three different types may lead to an improvement in the correlation of extreme gust events with respect to type.